Solveeit Logo

Question

Question: How do you find the vertex and the intercepts for \(f\left( x \right) = 2{x^2} - 12x + 21\)?...

How do you find the vertex and the intercepts for f(x)=2x212x+21f\left( x \right) = 2{x^2} - 12x + 21?

Explanation

Solution

We have to find the vertex and the intercepts for f(x)=2x212x+21f\left( x \right) = 2{x^2} - 12x + 21. First rewrite the equation in vertex form. Next, use the vertex form of parabola, to determine the values of aa, hh, and kk. Next, find the vertex by putting the value of hh and . Then, find the yy-intercept by substituting 00 for xx in f(x)=2x212x+21f\left( x \right) = 2{x^2} - 12x + 21. Then, find the xx-intercept by substituting 00 for yy in vertex form of equation.
Vertex form of a parabola: a(x+d)2+ea{\left( {x + d} \right)^2} + e
d=b2ad = \dfrac{b}{{2a}}
e=cb24ae = c - \dfrac{{{b^2}}}{{4a}}
Vertex form: y=a(xh)2+ky = a{\left( {x - h} \right)^2} + k
Vertex: (h,k)\left( {h,k} \right)
p=14ap = \dfrac{1}{{4a}}
Focus: (h,k+p)\left( {h,k + p} \right)
Directrix: y=kpy = k - p

Complete step by step answer:
We have to find the vertex and the intercepts for f(x)=2x212x+21f\left( x \right) = 2{x^2} - 12x + 21.
So, compare 2x212x+212{x^2} - 12x + 21 with ax2+bx+ca{x^2} + bx + c.
So, first rewrite the equation in vertex form.
For this, complete the square for 2x212x+212{x^2} - 12x + 21.
Use the form ax2+bx+ca{x^2} + bx + c, to find the values of aa, bb, and cc.
a=2,b=12,c=21a = 2,b = - 12,c = 21
Consider the vertex form of a parabola.
a(x+d)2+ea{\left( {x + d} \right)^2} + e
Now, substitute the values of aa and bb into the formula d=b2ad = \dfrac{b}{{2a}}.
d=122×2d = \dfrac{{ - 12}}{{2 \times 2}}
Simplify the right side.
d=3\Rightarrow d = - 3
Find the value of ee using the formula e=cb24ae = c - \dfrac{{{b^2}}}{{4a}}.
e=21(12)24×2e = 21 - \dfrac{{{{\left( { - 12} \right)}^2}}}{{4 \times 2}}
e=3\Rightarrow e = 3
Now, substitute the values of aa, dd, and ee into the vertex form a(x+d)2+ea{\left( {x + d} \right)^2} + e.
2(x3)2+32{\left( {x - 3} \right)^2} + 3
Set yy equal to the new right side.
y=2(x3)2+3y = 2{\left( {x - 3} \right)^2} + 3
Now, use the vertex form, y=a(xh)2+ky = a{\left( {x - h} \right)^2} + k, to determine the values of aa, hh, and kk.
a=2a = 2
h=3h = 3
k=3k = 3
Since the value of aa is positive, the parabola opens up.
Opens Up
Find the vertex (h,k)\left( {h,k} \right).
(3,3)\left( {3,3} \right)
Find the yy-intercept.
Use the original equation, and substitute 00 for xx.
f(0)=2(0)212(0)+21f\left( 0 \right) = 2{\left( 0 \right)^2} - 12\left( 0 \right) + 21
f(0)=21\Rightarrow f\left( 0 \right) = 21
Therefore, the yy-intercept is (0,21)\left( {0,21} \right).
Find the xx-intercept.
Use equation y=2(x3)2+3y = 2{\left( {x - 3} \right)^2} + 3, and substitute 00 for yy.
2(x3)2=32{\left( {x - 3} \right)^2} = - 3
(x3)2=32\Rightarrow {\left( {x - 3} \right)^2} = - \dfrac{3}{2}
x3=±32i\Rightarrow x - 3 = \pm \sqrt {\dfrac{3}{2}} i
x=3+32i,332i\Rightarrow x = 3 + \sqrt {\dfrac{3}{2}} i,3 - \sqrt {\dfrac{3}{2}} i
Since, xx is a complex number. Thus, f(x)f\left( x \right) has no xx-intercepts.
Hence, for f(x)=2x212x+21f\left( x \right) = 2{x^2} - 12x + 21
Vertex: (3,3)\left( {3,3} \right)
yy-intercept: (0,21)\left( {0,21} \right)
xx-intercept: No intercepts

Note: We can also determine the vertex and the intercepts for f(x)=2x212x+21f\left( x \right) = 2{x^2} - 12x + 21 by plotting it.
Graph of f(x)=2x212x+21f\left( x \right) = 2{x^2} - 12x + 21:

Hence, for f(x)=2x212x+21f\left( x \right) = 2{x^2} - 12x + 21
Vertex: (3,3)\left( {3,3} \right)
yy-intercept: (0,21)\left( {0,21} \right)
xx-intercept: No intercepts