Solveeit Logo

Question

Question: How do you find the values of x and y given \(\left[ \begin{matrix} 4x-3y \\\ x+y \\\ \e...

How do you find the values of x and y given [4x3y x+y ]=[11 1 ]\left[ \begin{matrix} 4x-3y \\\ x+y \\\ \end{matrix} \right]=\left[ \begin{matrix} 11 \\\ 1 \\\ \end{matrix} \right]?

Explanation

Solution

We define the meaning of equality of two matrices. From the given relation of [4x3y x+y ]=[11 1 ]\left[ \begin{matrix} 4x-3y \\\ x+y \\\ \end{matrix} \right]=\left[ \begin{matrix} 11 \\\ 1 \\\ \end{matrix} \right], we equate their corresponding elements. We get two equations of two unknowns. We solve them to get the values of x and y.

Complete step-by-step solution:
In the given relation we have been given equality of two matrices.
Let’s assume that A and B are two matrices where A=[aij]A=\left[ {{a}_{ij}} \right] and B=[bij]B=\left[ {{b}_{ij}} \right]. Here aij{{a}_{ij}} and bij{{b}_{ij}} are the ith{{i}^{th}} row and jth{{j}^{th}} column elements of the matrices A and B respectively.
If both the matrices are of the same order then the equality A=BA=B gives us aij=bij{{a}_{ij}}={{b}_{ij}}.
This means equality of two same order matrices gives equality of corresponding elements of those two matrices.
For our given relation of [4x3y x+y ]=[11 1 ]\left[ \begin{matrix} 4x-3y \\\ x+y \\\ \end{matrix} \right]=\left[ \begin{matrix} 11 \\\ 1 \\\ \end{matrix} \right], let’s assume M=[4x3y x+y ];N=[11 1 ]M=\left[ \begin{matrix} 4x-3y \\\ x+y \\\ \end{matrix} \right];N=\left[ \begin{matrix} 11 \\\ 1 \\\ \end{matrix} \right].
Both matrices are of order (2×1)\left( 2\times 1 \right).
That’s why we can equalise corresponding elements of those matrices.
[4x3y x+y ]=[11 1 ]\left[ \begin{matrix} 4x-3y \\\ x+y \\\ \end{matrix} \right]=\left[ \begin{matrix} 11 \\\ 1 \\\ \end{matrix} \right] gives 4x3y=11....(i)4x-3y=11....(i) and x+y=1.....(ii)x+y=1.....(ii).
We have two unknowns and two equations to solve.
We multiply 3 with the equation (ii) and add that to equation (i).
We get 3(x+y)=33x+3y=3.....(iii)3\left( x+y \right)=3\Rightarrow 3x+3y=3.....(iii)
Now adding (4x3y)+(3x+3y)=11+3\left( 4x-3y \right)+\left( 3x+3y \right)=11+3. Simplifying we get
7x=14 x=147=2 \begin{aligned} & 7x=14 \\\ & \Rightarrow x=\dfrac{14}{7}=2 \\\ \end{aligned}
From the value of x, we get y=1x=12=1y=1-x=1-2=-1.
Therefore, the values of x and y is x=2,y=1x=2,y=-1.

Note: Order mismatch of matrices can’t solve the equality of matrices. The corresponding elements can’t be projected with one another. The equality of (m×n)\left( m\times n \right) ordered matrix with (n×m)\left( n\times m \right) ordered matrix is also not possible.