Solveeit Logo

Question

Question: How do you find the values of the six trigonometric functions given \(\tan \theta \) is undefined an...

How do you find the values of the six trigonometric functions given tanθ\tan \theta is undefined and πθ2π\pi \leqslant \theta \leqslant 2\pi ?

Explanation

Solution

We have to find the values of the six trigonometric functions given tanθ\tan \theta is undefined and πθ2π\pi \leqslant \theta \leqslant 2\pi . For this, first find the angle θ\theta for which tanθ\tan \theta is undefined and πθ2π\pi \leqslant \theta \leqslant 2\pi . Then, find other five trigonometric functions at this angle θ\theta using trigonometric values and identities.

Formula used: sin(3π2)=1\sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1
cos(3π2)=0\cos \left( {\dfrac{{3\pi }}{2}} \right) = 0
cos(θ)×sec(θ)=1\cos \left( \theta \right) \times \sec \left( \theta \right) = 1
sin(θ)×cosec(θ)=1\sin \left( \theta \right) \times \cos ec\left( \theta \right) = 1
tan(θ)×cot(θ)=1\tan \left( \theta \right) \times \cot \left( \theta \right) = 1

Complete step-by-step solution:
We have to find the values of the six trigonometric functions given tanθ\tan \theta is undefined and πθ2π\pi \leqslant \theta \leqslant 2\pi .
So, first we have to find the angle θ\theta for which tanθ\tan \theta is undefined and πθ2π\pi \leqslant \theta \leqslant 2\pi .
We know that tanθ\tan \theta is undefined for θ=π2\theta = \dfrac{\pi }{2}.
But θ[π,2π]\theta \in \left[ {\pi ,2\pi } \right].
So, we can find the angle θ\theta by adding π2\dfrac{\pi }{2} to π\pi or subtracting π2\dfrac{\pi }{2} from 2π2\pi .
θ=π+π2\theta = \pi + \dfrac{\pi }{2}
θ=3π2\Rightarrow \theta = \dfrac{{3\pi }}{2}
Now, we will find the other five trigonometric functions on θ=3π2\theta = \dfrac{{3\pi }}{2}.
Since, sin(3π2)=1\sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1.
sin(θ)=sin(3π2)=1\Rightarrow \sin \left( \theta \right) = \sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1
Since, cos(3π2)=0\cos \left( {\dfrac{{3\pi }}{2}} \right) = 0.
cos(θ)=cos(3π2)=0\Rightarrow \cos \left( \theta \right) = \cos \left( {\dfrac{{3\pi }}{2}} \right) = 0
Now, using trigonometry identity cos(θ)×sec(θ)=1\cos \left( \theta \right) \times \sec \left( \theta \right) = 1, we get
sec(θ)=1cos(θ)=10\Rightarrow \sec \left( \theta \right) = \dfrac{1}{{\cos \left( \theta \right)}} = \dfrac{1}{0} = undefined
Now, using trigonometry identity sin(θ)×cosec(θ)=1\sin \left( \theta \right) \times \cos ec\left( \theta \right) = 1, we get
cosec(θ)=1sin(θ)=11=1\Rightarrow \cos ec\left( \theta \right) = \dfrac{1}{{\sin \left( \theta \right)}} = \dfrac{1}{{ - 1}} = - 1
Now, using trigonometry identity tan(θ)×cot(θ)=1\tan \left( \theta \right) \times \cot \left( \theta \right) = 1, we get
cot(θ)=1tan(θ)=01=0\cot \left( \theta \right) = \dfrac{1}{{\tan \left( \theta \right)}} = \dfrac{0}{1} = 0
Final solution: Therefore, sin(θ)=1\sin \left( \theta \right) = - 1, cos(θ)=0\cos \left( \theta \right) = 0, sec(θ)=\sec \left( \theta \right) = undefined, cosec(θ)=1\cos ec\left( \theta \right) = - 1 and cot(θ)=0\cot \left( \theta \right) = 0.
Additional information: Trigonometric identity: An equation involving trigonometric ratios of an angle θ\theta (say) is said to be a trigonometric identity if it is satisfied for all values of θ\theta for which the given trigonometric ratios are defined.
For example, cos2θ12cosθ=cosθ(cosθ12){\cos ^2}\theta - \dfrac{1}{2}\cos \theta = \cos \theta \left( {\cos \theta - \dfrac{1}{2}} \right) is a trigonometric identity, whereas cosθ(cosθ12)=0\cos \theta \left( {\cos \theta - \dfrac{1}{2}} \right) = 0 is an equation.
Also, secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} is a trigonometric identity, because it holds for all values of θ\theta except for which cosθ=0\cos \theta = 0. For cosθ=0\cos \theta = 0, secθ\sec \theta is not defined.

Note: We can directly find the trigonometric functions using trigonometric identities:
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.........…(1)
sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1.........…(2)
cosec2θcot2θ=1\cos e{c^2}\theta - {\cot ^2}\theta = 1………...(3)
So, first we can determine secθ\sec \theta using trigonometry identity (2).
sec2θ=1+tan2θ{\sec ^2}\theta = 1 + {\tan ^2}\theta
secθ=±1+tan2θ\Rightarrow \sec \theta = \pm \sqrt {1 + {{\tan }^2}\theta }
Since, tanθ\tan \theta is undefined. So, tanθ=10\tan \theta = \dfrac{1}{0}.
sec(θ)=\Rightarrow \sec \left( \theta \right) = undefined
Now, using trigonometry identity cos(θ)×sec(θ)=1\cos \left( \theta \right) \times \sec \left( \theta \right) = 1, we get
cos(θ)=1sec(θ)=01=0\cos \left( \theta \right) = \dfrac{1}{{\sec \left( \theta \right)}} = \dfrac{0}{1} = 0
Now, we can determine sinθ\sin \theta using trigonometry identity (1).
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
sinθ=±1cos2θ\Rightarrow \sin \theta = \pm \sqrt {1 - {{\cos }^2}\theta }
sinθ=±10\Rightarrow \sin \theta = \pm \sqrt {1 - 0}
sinθ=±1\Rightarrow \sin \theta = \pm 1
Since, πθ2π\pi \leqslant \theta \leqslant 2\pi .
sinθ=1\Rightarrow \sin \theta = - 1
Now, using trigonometry identity sin(θ)×cosec(θ)=1\sin \left( \theta \right) \times \cos ec\left( \theta \right) = 1, we get
cosec(θ)=1sin(θ)=11=1\Rightarrow \cos ec\left( \theta \right) = \dfrac{1}{{\sin \left( \theta \right)}} = \dfrac{1}{{ - 1}} = - 1
Now, using trigonometry identity tan(θ)×cot(θ)=1\tan \left( \theta \right) \times \cot \left( \theta \right) = 1, we get
cot(θ)=1tan(θ)=01=0\cot \left( \theta \right) = \dfrac{1}{{\tan \left( \theta \right)}} = \dfrac{0}{1} = 0
Therefore, sin(θ)=1\sin \left( \theta \right) = - 1, cos(θ)=0\cos \left( \theta \right) = 0, sec(θ)=\sec \left( \theta \right) = undefined, cosec(θ)=1\cos ec\left( \theta \right) = - 1 and cot(θ)=0\cot \left( \theta \right) = 0.