Solveeit Logo

Question

Question: How do you find the value of \(\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }...

How do you find the value of sin(tan1(12)+tan1(13))\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)?

Explanation

Solution

To find the value of given trigonometric function we will use trigonometric identity tan1(x)+tan1(y)=tan1(x+y1xy){\tan ^{ - 1}}(x) + {\tan ^{ - 1}}(y) = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right). After implementing this identity we will find the value of the sin\sin function.

Complete step by step answer:
Here we are given to simplify the term sin(tan1(12)+tan1(13))\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)
First, we solve (tan1(12)+tan1(13))\left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)
We know that
tan1(x)+tan1(y)=tan1(x+y1xy){\tan ^{ - 1}}(x) + {\tan ^{ - 1}}(y) = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)
Putting x=12x = \dfrac{1}{2} and y=13y = \dfrac{1}{3} in the above formula. We get,
\Rightarrow (tan1(12)+tan1(13))=tan1(12+13112×13)\left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2} + \dfrac{1}{3}}}{{1 - \dfrac{1}{2} \times \dfrac{1}{3}}}} \right)
Simplifying the above equation. We get,
tan1(3+26116)=tan1(56616)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{3 + 2}}{6}}}{{1 - \dfrac{1}{6}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{5}{6}}}{{\dfrac{{6 - 1}}{6}}}} \right)
Further solving the above equation. We get,
\Rightarrow tan1(5656){\tan ^{ - 1}}\left( {\dfrac{{\dfrac{5}{6}}}{{\dfrac{5}{6}}}} \right) =tan1(56×65) = {\tan ^{ - 1}}\left( {\dfrac{5}{6} \times \dfrac{6}{5}} \right)
tan1(1)\Rightarrow {\tan ^{ - 1}}(1)
Let tan1(1)=A{\tan ^{ - 1}}(1) = A
So, tan(A)=1\tan (A) = 1
We know that tan(45)=1\tan (45^\circ ) = 1

Here, we get A=45A = 45^\circ
Therefore, tan1(1)=45{\tan ^{ - 1}}(1) = 45^\circ
So, (tan1(12)+tan1(13))\left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) =45= 45^\circ
Therefore,
\Rightarrow sin(tan1(12)+tan1(13))\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) =sin(45) = \sin (45^\circ )
We know that sin(45)=12\sin (45^\circ ) = \dfrac{1}{{\sqrt 2 }}
Therefore, we get
sin(tan1(12)+tan1(13))=12\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) = \dfrac{1}{{\sqrt 2 }}
Hence, the value of sin(tan1(12)+tan1(13))\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) is equal to 12\dfrac{1}{{\sqrt 2 }}.

Note: In this types of problems the student must remember the basic trigonometric identities and the value of angles of trigonometric function such as tan(45)=1\tan (45^\circ ) = 1 and sin(45)=12\sin (45^\circ ) = \dfrac{1}{{\sqrt 2 }}.
In these types of problems first reduce the function by using different trigonometric identities and then solve it. After reducing it will be easier to solve the problem.