Solveeit Logo

Question

Question: How do you find the value of \(\sin {435^ \circ }\)?...

How do you find the value of sin435\sin {435^ \circ }?

Explanation

Solution

In the given question, we are required to find the value of sin435\sin {435^ \circ }. We will use the trigonometric formulae and identities such as sin(θ360)=sinθ\sin \left( {\theta - {{360}^ \circ }} \right) = \sin \theta to find the value of the trigonometric function at a particular angle. We should be clear with the signs of all trigonometric functions in the four quadrants.

Complete step by step solution:
We have to find the value of the trigonometric function sin435\sin {435^ \circ }.
Now, we know that the trigonometric function sine is positive in the first and second quadrant. Also, the value of the sine function gets repeated after a regular interval of 2π2\pi radians.
We know that 435>360{435^ \circ } > {360^ \circ }.
Also, we have, sin(360+θ)=sinθ\sin \left( { {{360}^ \circ }} +\theta \right) = \sin \theta .
So, we get,
sin435=sin(360+75)\sin {435^ \circ } = \sin \left( { {{360}^ \circ }} + {{75}^ \circ } \right)
Simplifying the expression, we get,
sin435=sin75\Rightarrow \sin {435^ \circ } = \sin {75^ \circ }
We know that the angle 75{75^ \circ } lies in the first quadrant. So, the sine of the angle will be a positive value.
Now, we will use the compound angle formula for sine as sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B.
So, we have, sin435=sin75\sin {435^ \circ } = \sin {75^ \circ }
sin435sin75=sin(45+30)\Rightarrow \sin {435^ \circ } \sin {75^ \circ } = \sin \left( {{{45}^ \circ } + {{30}^ \circ }} \right)
Here, A=45A = {45^ \circ } and B=30B = {30^ \circ }.
So, we get,
sin435=sin(45)cos(30)+sin(30)cos(45)\Rightarrow \sin {435^ \circ } = \sin \left( {{{45}^ \circ }} \right)\cos \left( {{{30}^ \circ }} \right) + \sin \left( {{{30}^ \circ }} \right)\cos \left( {{{45}^ \circ }} \right)
Now, we know the values of trigonometric functions sine and cosine for angles 45{45^ \circ } and 30{30^ \circ } as sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}, cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}, sin30=12\sin {30^ \circ } = \dfrac{1}{2} and cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}.
Substituting these values, we get,
sin435=(12)(32)+(12)(12)\Rightarrow \sin {435^ \circ } = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) + \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right)
Simplifying the expression, we get,
sin435=(3+122)\Rightarrow \sin {435^ \circ } = \left( {\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right)
Therefore, the value of sin435\sin {435^ \circ } is (3+122)\left( {\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right).
This value is approximately equal to 0.9660.966.

Note:
We can also solve the given problem using the periodicity of the cosine and sine functions. Periodic Function is a function that repeats its value after a certain interval. For a real number T>0T > 0, f(x+T)=f(x)f\left( {x + T} \right) = f\left( x \right) for all x. If T is the smallest positive real number such that f(x+T)=f(x)f\left( {x + T} \right) = f\left( x \right) for all x, then T is called the fundamental period. The fundamental period of sine is 2π2\pi radians.