Solveeit Logo

Question

Question: How do you find the value of \[k\] so that the slope of the line through \[\left( 2,-k \right)\] and...

How do you find the value of kk so that the slope of the line through (2,k)\left( 2,-k \right) and (1,4)\left( -1,4 \right) is 1?1?

Explanation

Solution

We have to find the value of kk and the slope if given i.e. 11 and the line through slope passing is given (2,k)\left( 2,-k \right) and (1,4).\left( -1,4 \right). By putting this value in slope formula and solve for k.k. By putting this we can find the value of k.k.
Slope formula =m=y2y1x2x1=m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}

Complete step by step solution:
The slope can be found by using the formula m=y2y1x2x1m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}
Where mm is the slope and (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) are two points on the line.
We have given (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) that is (2,k)\left( 2,-k \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) is (1,4).\left( -1,4 \right).
The slope is 11 as given in the question know substitute the values given in the problem and solve for k.k.
m=y2y1x2x1\Rightarrow m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}
1=4(k)12\Rightarrow 1=\dfrac{4-\left( -k \right)}{-1-2}
1=4+k3\Rightarrow 1=\dfrac{4+k}{-3}
3×1=3×4+k3\Rightarrow -3\times 1=-3\times \dfrac{4+k}{-3}
3=3×4+k3\Rightarrow -3=-3\times \dfrac{4+k}{-3}
Cancel the same term we will get
3=4+k\Rightarrow -3=4+k
34=4+k4\Rightarrow -3-4=4+k-4
34=44+k\Rightarrow -3-4=4-4+k
7=0+k\Rightarrow -7=0+k
7=k\Rightarrow -7=k
k=7\Rightarrow k=-7

So, the value of the kk is 7.-7.

Note: Use the correct the slope formula and solve for k.k. While considering point is (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) students may mistake and consider point as (x1,x2)\left( {{x}_{1}},{{x}_{2}} \right) and (y1,y2).\left( {{y}_{1}},{{y}_{2}} \right).