Solveeit Logo

Question

Question: How do you find the value of \( \csc \left( {\dfrac{{3\pi }}{4}} \right) \) ?...

How do you find the value of csc(3π4)\csc \left( {\dfrac{{3\pi }}{4}} \right) ?

Explanation

Solution

Hint : In order to solve this question ,find sin(3π4)\sin \left( {\dfrac{{3\pi }}{4}} \right) as cscθ=1sinθ\csc \theta = \dfrac{1}{{\sin \theta }} by converting (3π4)\left( {\dfrac{{3\pi }}{4}} \right) into some (A+B) and apply sin(A+B)\sin \left( {A + B} \right) formula and find the inverse of it to find the required answer.
Formula:
sin(AB)=sin(A)cos(B)sin(B)cos(A)\sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right)

Complete step-by-step answer :
In trigonometric table ,the value of sin(3π4)\sin \left( {\dfrac{{3\pi }}{4}} \right) is not given ,so to find this we have use some other means to find the required value .We’ll use other trigonometric values given in the trigonometric table .
First ,we’ll ,convert (3π4)\left( {\dfrac{{3\pi }}{4}} \right) into some (A-B) form
sin(3π4)=sin(π2+π4)\sin \left( {\dfrac{{3\pi }}{4}} \right) = \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{4}} \right)
Now we will apply formula sin(A+B)=sin(A)cos(B)+sin(B)cos(A)\sin \left( {A + B} \right) = \sin \left( A \right)\cos \left( B \right) + \sin \left( B \right)\cos \left( A \right)
Where , A is equal to π2\dfrac{\pi }{2} and B is equal to π4\dfrac{\pi }{4}
sin(π2+π4)=sin(π2)cos(π4)+sin(π4)cos(π2)\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{4}} \right) + \sin \left( {\dfrac{\pi }{4}} \right)\cos \left( {\dfrac{\pi }{2}} \right) -(1)
From the trigonometric table
sin(π4)=12\sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\, ,
sin(π2)=1\sin \left( {\dfrac{\pi }{2}} \right) = 1
cos(π4)=12\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\,
cos(π2)=0\cos \left( {\dfrac{\pi }{2}} \right) = 0
Putting values in equation (1)
=1×12+12×0 =12  = 1 \times \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \times 0 \\\ = \dfrac{1}{{\sqrt 2 }} \\\
Therefore, the value of sin(3π4)=12\sin \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sqrt 2 }}
Since using identity of trigonometry cscθ=1sinθ\csc \theta = \dfrac{1}{{\sin \theta }} ,here θ=3π4\theta = \dfrac{{3\pi }}{4}

csc(3π4)=1sin(3π4) csc(3π4)=112 csc(3π4)=2  \csc \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\sin \left( {\dfrac{{3\pi }}{4}} \right)}} \\\ \csc \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}} \\\ \csc \left( {\dfrac{{3\pi }}{4}} \right) = \sqrt 2 \\\

Hence the value of csc(3π4)\csc \left( {\dfrac{{3\pi }}{4}} \right) is equal to 2\sqrt 2 .
So, the correct answer is “ 2\sqrt 2 ”.

Note : 1. Periodic Function= A function f(x)f(x) is said to be a periodic function if there exists a real number T > 0 such that f(x+T)=f(x)f(x + T) = f(x) for all x.
If T is the smallest positive real number such that f(x+T)=f(x)f(x + T) = f(x) for all x, then T is called the fundamental period of f(x)f(x) .
Since sin(2nπ+θ)=sinθ\sin \,(2n\pi + \theta ) = \sin \theta for all values of θ\theta and n \in N.
2. Even Function – A function f(x)f(x) is said to be an even function ,if f(x)=f(x)f( - x) = f(x) for all x in its domain.
Odd Function – A function f(x)f(x) is said to be an even function ,if f(x)=f(x)f( - x) = - f(x) for all x in its domain.
We know that sin(θ)=sinθ.cos(θ)=cosθandtan(θ)=tanθ\sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta
Therefore, sinθ\sin \theta and tanθ\tan \theta and their reciprocals, cosecθ\cos ec\theta and cotθ\cot \theta are odd functions whereas cosθ\cos \theta and its reciprocal secθ\sec \theta are even functions.