Solveeit Logo

Question

Question: How do you find the value of \[\cot \left( {\dfrac{\pi }{4}} \right)\] ?...

How do you find the value of cot(π4)\cot \left( {\dfrac{\pi }{4}} \right) ?

Explanation

Solution

Hint : In order to solve this question, we can proceed by finding the sin\sin and cos\cos of the same angle as given and we know that cotx=1tanx\cot x = \dfrac{1}{{\tan x}} and tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} .Therefore we divide both the values of sin\sin and cos\cos of the same angle to find the value of tan\tan and then reciprocate the value to get the value of cot\cot for the same angle i.e., π4\dfrac{\pi }{4} and get our desired result.

Complete step-by-step answer :
Now we are given a trigonometric function, cot(π4)\cot \left( {\dfrac{\pi }{4}} \right)
and we have to find the value of cot(π4)\cot \left( {\dfrac{\pi }{4}} \right)
So, we know that,
The value of sin(π4)\sin \left( {\dfrac{\pi }{4}} \right) is equals to 12\dfrac{1}{{\sqrt 2 }}
And the value of cos(π4)\cos \left( {\dfrac{\pi }{4}} \right) is also equals to 12\dfrac{1}{{\sqrt 2 }}
Now using trigonometric identity
i.e., tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
First, we will find out the value of tan(π4)\tan \left( {\dfrac{\pi }{4}} \right)
Therefore, tan(π4)=sin(π4)cos(π4)\tan \left( {\dfrac{\pi }{4}} \right) = \dfrac{{\sin \left( {\dfrac{\pi }{4}} \right)}}{{\cos \left( {\dfrac{\pi }{4}} \right)}}
On substituting the values of sin(π4)\sin \left( {\dfrac{\pi }{4}} \right) and cos(π4)\cos \left( {\dfrac{\pi }{4}} \right)
tan(π4)=1212\tan \left( {\dfrac{\pi }{4}} \right) = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}
On dividing, we get
tan(π4)=1\Rightarrow \tan \left( {\dfrac{\pi }{4}} \right) = 1
Now again using trigonometric identity,
i.e., cotx=1tanx\cot x = \dfrac{1}{{\tan x}}
we will now find out the value of cot(π4)\cot \left( {\dfrac{\pi }{4}} \right)
So, cot(π4)=1tan(π4)\cot \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{4}} \right)}}
On substituting the value of tan(π4)\tan \left( {\dfrac{\pi }{4}} \right) ,we get
cot(π4)=11\cot \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{1}
cot(π4)=1\Rightarrow \cot \left( {\dfrac{\pi }{4}} \right) = 1
which is the required answer.
Hence, the value of cot(π4)\cot \left( {\dfrac{\pi }{4}} \right) is equal to 11
So, the correct answer is “1”.

Note : Here in these types of problems where we are asked to find the value of the cotangent or tangent of any angle, we must know the basic values of the sine and cosine of the angle like 0, 30, 45, 60, 900^\circ ,{\text{ }}30^\circ ,{\text{ }}45^\circ ,{\text{ }}60^\circ ,{\text{ }}90^\circ which can also be written as 0, π6, π4, π3, π20^\circ ,{\text{ }}\dfrac{\pi }{6},{\text{ }}\dfrac{\pi }{4},{\text{ }}\dfrac{\pi }{3},{\text{ }}\dfrac{\pi }{2} and then we can easily calculate the same angles of any given function.
Also, there is an alternative way to solve this question i.e.,
As we know that,
cotx=1tanx (1)\cot x = \dfrac{1}{{\tan x}}{\text{ }} - - - \left( 1 \right)
And tanx=sinxcosx (2)\tan x = \dfrac{{\sin x}}{{\cos x}}{\text{ }} - - - \left( 2 \right)
So, from (1)\left( 1 \right) and (2)\left( 2 \right) we can write
cotx=1sinxcosx \cot x = \dfrac{1}{{\dfrac{{\sin x}}{{\cos x}}}}{\text{ }}
cotx=cosxsinx \Rightarrow \cot x = \dfrac{{\cos x}}{{\sin x}}{\text{ }}
So, here we can directly put the values of sin\sin and cos\cos at the same angle to get the result.
As we know that,
The value of sin(π4)\sin \left( {\dfrac{\pi }{4}} \right) is equals to 12\dfrac{1}{{\sqrt 2 }}
And the value of cos(π4)\cos \left( {\dfrac{\pi }{4}} \right) is also equals to 12\dfrac{1}{{\sqrt 2 }}
Therefore, the value of cot(π4)\cot \left( {\dfrac{\pi }{4}} \right) will be equals to
cot(π4)=cos(π4)sin(π4) \cot \left( {\dfrac{\pi }{4}} \right) = \dfrac{{\cos \left( {\dfrac{\pi }{4}} \right)}}{{\sin \left( {\dfrac{\pi }{4}} \right)}}{\text{ }}
On substituting values, we get
cot(π4)=1212 \cot \left( {\dfrac{\pi }{4}} \right) = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}{\text{ }}
cot(π4)=1 \Rightarrow \cot \left( {\dfrac{\pi }{4}} \right) = 1{\text{ }}
Hence, we get our required result.
i.e., the value of cot(π4)\cot \left( {\dfrac{\pi }{4}} \right) is equal to 11