Solveeit Logo

Question

Question: How do you find the value of \(\cos \left( \dfrac{3\pi }{8} \right)\) using a double or half angle f...

How do you find the value of cos(3π8)\cos \left( \dfrac{3\pi }{8} \right) using a double or half angle formula?

Explanation

Solution

We know that the formula for cos2x\cos 2x is 2cos2x12{{\cos }^{2}}x-1 . So we can write cos2x=1+cos2x2{{\cos }^{2}}x=\dfrac{1+\cos 2x}{2}
Let’s assume 2x as y so the value of x will be y2\dfrac{y}{2} . So by replacing these in the above formula we get
cos2y2=1+cosy2{{\cos }^{2}}\dfrac{y}{2}=\dfrac{1+\cos y}{2} we can use this formula to find the value of cos(3π8)\cos \left( \dfrac{3\pi }{8} \right)

Complete step by step answer:
We have to find the value of cos(3π8)\cos \left( \dfrac{3\pi }{8} \right) , we will use the half angle formula to find the value.
We know the formula cos2y2=1+cosy2{{\cos }^{2}}\dfrac{y}{2}=\dfrac{1+\cos y}{2}
If we put the value of y equal to 3π4\dfrac{3\pi }{4} then y2\dfrac{y}{2} will be equal to 3π8\dfrac{3\pi }{8} replacing these in above formula we get
cos23π8=1+cos3π42{{\cos }^{2}}\dfrac{3\pi }{8}=\dfrac{1+\cos \dfrac{3\pi }{4}}{2} …eq1
We know the formula cos(πx)=cosx\cos \left( \pi -x \right)=-\cos x
Putting x equal to π4\dfrac{\pi }{4} we get
cos3π4=cosπ4\cos \dfrac{3\pi }{4}=-\cos \dfrac{\pi }{4}
We know the value of cosπ4\cos \dfrac{\pi }{4} is equal to 12\dfrac{1}{\sqrt{2}}
So the value of cos3π4\cos \dfrac{3\pi }{4} is equal to 12-\dfrac{1}{\sqrt{2}} , putting the value eq1 we get
cos23π8=1122{{\cos }^{2}}\dfrac{3\pi }{8}=\dfrac{1-\dfrac{1}{\sqrt{2}}}{2}
Further solving we get
cos23π8=2122{{\cos }^{2}}\dfrac{3\pi }{8}=\dfrac{\sqrt{2}-1}{2\sqrt{2}}
cos(3π8)\cos \left( \dfrac{3\pi }{8} \right) can be ±2122\pm \sqrt{\dfrac{\sqrt{2}-1}{2\sqrt{2}}}
3π8\dfrac{3\pi }{8} comes in the first quadrant so the value of cos(3π8)\cos \left( \dfrac{3\pi }{8} \right) will be positive so the value of cos(3π8)\cos \left( \dfrac{3\pi }{8} \right) is 2122\sqrt{\dfrac{\sqrt{2}-1}{2\sqrt{2}}}

Note:
If the value of cos2x{{\cos }^{2}}x is equal to y then the value of cos x can be ±y\pm \sqrt{y} , the value of cos x depends on the quadrant of x. If the quadrant of x is in first or fourth then the value of cos x will be y\sqrt{y}, if the quadrant of x is in second or third quadrant then the value cos x will be equal to y-\sqrt{y}. This cos is positive in the first and fourth quadrant, negative in the third and fourth quadrant.