Solveeit Logo

Question

Question: How do you find the value of \( \cos {300^ \circ } \) ?...

How do you find the value of cos300\cos {300^ \circ } ?

Explanation

Solution

Hint : In the given question, we are required to find the value of cos300\cos {300^ \circ } . We will use the trigonometric formulae and identities such as cos(360θ)=cosθ\cos \left( {{{360}^ \circ } - \theta } \right) = \cos \theta to find the value of the trigonometric function at the particular angle. We should be clear with the signs of all trigonometric functions in the four quadrants.

Complete step-by-step answer :
So, we have to find the value of the trigonometric function cos300\cos {300^ \circ } .
Now, we know that the trigonometric function cosine is positive in the fourth quadrant. Also, the value of the cosine function gets repeated after a regular interval of 2π2\pi radians.
We know that the angle 300{300^ \circ } lies in the fourth quadrant. So, the cosine of the angle will be a positive value.
So, we have, cos300\cos {300^ \circ }
cos300=cos(36060)\Rightarrow \cos {300^ \circ } = \cos \left( {{{360}^ \circ } - {{60}^ \circ }} \right)
Now, we know that the value of cos(360θ)\cos \left( {{{360}^ \circ } - \theta } \right) is equal to cosθ\cos \theta . So, we get,
cos300=cos(60)\Rightarrow \cos {300^ \circ } = \cos \left( {{{60}^ \circ }} \right)
Now, we know that cosine and sine are complementary ratios of each other. So, we have, sin(90θ)=cosθ\sin \left( {{{90}^ \circ } - \theta } \right) = \cos \theta . Hence, we get,
cos300=sin(9060)\Rightarrow \cos {300^ \circ } = \sin \left( {{{90}^ \circ } - {{60}^ \circ }} \right)
Simplifying the expression,
cos300=sin(30)\Rightarrow \cos {300^ \circ } = \sin \left( {{{30}^ \circ }} \right)
Now, we also know that the value of sin(30)\sin \left( {{{30}^ \circ }} \right) is (12)\left( {\dfrac{1}{2}} \right) .
Hence, we get,
cos300=12\Rightarrow \cos {300^ \circ } = \dfrac{1}{2}
Therefore, the value of cos300\cos {300^ \circ } is (12)\left( {\dfrac{1}{2}} \right) .
So, the correct answer is “(12)\left( {\dfrac{1}{2}} \right) ”.

Note : We can also solve the given problem using the periodicity of the cosine and sine functions. Periodic Function is a function that repeats its value after a certain interval. For a real number T>0T > 0 , f(x+T)=f(x)f\left( {x + T} \right) = f\left( x \right) for all x. If T is the smallest positive real number such that f(x+T)=f(x)f\left( {x + T} \right) = f\left( x \right) for all x, then T is called the fundamental period. The fundamental period of cosine is 2π2\pi radians. So, cos(θ)=cos(θ2π)\cos \left( \theta \right) = \cos \left( {\theta - 2\pi } \right) . Hence, we get, cos300=cos(300360)=cos(60)=12\cos {300^ \circ } = \cos \left( {{{300}^ \circ } - {{360}^ \circ }} \right) = \cos \left( { - {{60}^ \circ }} \right) = \dfrac{1}{2} as we know that cosine is also positive in fourth quadrant of Cartesian plane.