Solveeit Logo

Question

Question: How do you find the value of \( c \) that satisfy the equation \( \dfrac{{f\left( b \right) - f\left...

How do you find the value of cc that satisfy the equation f(b)f(a)ba=f(c)\dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} = f'\left( c \right) in the conclusion of the mean value theorem for the function f(x)=4x2+4x3f\left( x \right) = 4{x^2} + 4x - 3 on the interval [1,0]\left[ { - 1,0} \right] ?

Explanation

Solution

Hint : The mean value theorem states that if a given function ff is continuous in [a,b]\left[ {a,b} \right] and differentiable in (a,b)\left( {a,b} \right) , then there exists a point cc in the interval (a,b)\left( {a,b} \right) such that the derivative of the function at the point cc can be given as f(c)=f(b)f(a)baf'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} . We can use this theorem to find the value of cc in the interval (a,b)\left( {a,b} \right) .

Complete step by step solution:
We have been given that the function f(x)=4x2+4x3f\left( x \right) = 4{x^2} + 4x - 3 satisfies the mean value theorem in the interval [1,0]\left[ { - 1,0} \right] .
We have to find the value of cc in the interval (1,0)\left( { - 1,0} \right) such that f(b)f(a)ba=f(c)\dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} = f'\left( c \right) .
Here a=1a = - 1 and b=0b = 0 .
We can find f(a)f\left( a \right) and f(b)f\left( b \right) using f(x)f\left( x \right) as,
f(a)=4a2+4a3 f(1)=4(1)2+(4×1)3=443=3 f(b)=4b2+4b3 f(0)=4(0)2+(4×0)3=0+03=3   f\left( a \right) = 4{a^2} + 4a - 3 \\\ \Rightarrow f\left( { - 1} \right) = 4{\left( { - 1} \right)^2} + \left( {4 \times - 1} \right) - 3 = 4 - 4 - 3 = - 3 \\\ f\left( b \right) = 4{b^2} + 4b - 3 \\\ \Rightarrow f\left( 0 \right) = 4{\left( 0 \right)^2} + \left( {4 \times 0} \right) - 3 = 0 + 0 - 3 = - 3 \;
Also we can find the derivative of the function f(x)f\left( x \right) as,
f(x)=d(4x2+4x3)dx=8x+4f'\left( x \right) = \dfrac{{d\left( {4{x^2} + 4x - 3} \right)}}{{dx}} = 8x + 4
Thus, for any point cc we have,
f(c)=8c+4f'\left( c \right) = 8c + 4
We put all the values in the formula for mean value theorem.
f(c)=f(b)f(a)ba 8c+4=(3)(3)0(1)=3+30+1=0 8c=4 c=48=12   f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} \\\ \Rightarrow 8c + 4 = \dfrac{{\left( { - 3} \right) - \left( { - 3} \right)}}{{0 - \left( { - 1} \right)}} = \dfrac{{ - 3 + 3}}{{0 + 1}} = 0 \\\ \Rightarrow 8c = - 4 \\\ \Rightarrow c = - \dfrac{4}{8} = - \dfrac{1}{2} \;
Thus, we get the value of c=12c = - \dfrac{1}{2} .
Hence, the required value is c=12c = - \dfrac{1}{2} .
So, the correct answer is “c=12c = - \dfrac{1}{2} ”.

Note : We used the conclusion of the mean value theorem to get the value of cc . We can see that the final value of cc lies in the open interval (1,0)\left( { - 1,0} \right) . While solving the problem we have to be careful that the value of aa is the lower end of the given interval and the value of bb is the upper end of the given interval. In this question we got f(a)=f(b)=3f\left( a \right) = f\left( b \right) = - 3 which may not always be the case in mean value theorem. When f(a)=f(b)f\left( a \right) = f\left( b \right) , this becomes a special case of mean value theorem, known as Rolle’s theorem.