Solveeit Logo

Question

Question: How do you find the value of \[2f\left( 1 \right) + 3g\left( 4 \right)\] if \[f\left( x \right) = 3x...

How do you find the value of 2f(1)+3g(4)2f\left( 1 \right) + 3g\left( 4 \right) if f(x)=3xf\left( x \right) = 3x and g(x)=4x2g(x) = - 4{x^2}?

Explanation

Solution

Put x=1x = 1 in f(x)f\left( x \right) to find the value of f(1)f\left( 1 \right) and put x=4x = 4 in g(x)g\left( x \right) to find the value of g(4)g\left( 4 \right). Then put the values of f(1)f\left( 1 \right) and g(4)g\left( 4 \right) in the expression 2f(1)+3g(4)2f\left( 1 \right) + 3g\left( 4 \right) to calculate its numerical value.

Complete step by step answer:
According to the question, we have to calculate the value of the expression 2f(1)+3g(4)2f\left( 1 \right) + 3g\left( 4 \right) and two functions are given to us.
The two functions are f(x)=3xf\left( x \right) = 3x and g(x)=4x2g(x) = - 4{x^2}.
First we will calculate the value of f(1)f\left( 1 \right). This can be determined by substituting x=1x = 1 in f(x)f\left( x \right). Doing so, this will give us:
f(1)=3(1) f(1)=3 .....(1)  \Rightarrow f\left( 1 \right) = 3\left( 1 \right) \\\ \Rightarrow f\left( 1 \right) = 3{\text{ }}.....{\text{(1)}} \\\
Next we will calculate the value of g(4)g\left( 4 \right). In the similar way, this can be obtained by substituting x=4x = 4 in g(4)g\left( 4 \right). So this will give us:
g(4)=4(4)2 g(4)=4×16 g(4)=64 .....(2)  \Rightarrow g\left( 4 \right) = - 4{\left( 4 \right)^2} \\\ \Rightarrow g\left( 4 \right) = - 4 \times 16 \\\ \Rightarrow g\left( 4 \right) = - 64{\text{ }}.....{\text{(2)}} \\\
As we know, we have to determine the value of the expression 2f(1)+3g(4)2f\left( 1 \right) + 3g\left( 4 \right). Thus putting values of f(1)f\left( 1 \right) and g(4)g\left( 4 \right) from the equations (1) and (2) in the expression, we’ll get:

2f(1)+3g(4)=2×3+3×(64) 2f(1)+3g(4)=6192 2f(1)+3g(4)=186  \Rightarrow 2f\left( 1 \right) + 3g\left( 4 \right) = 2 \times 3 + 3 \times \left( { - 64} \right) \\\ \Rightarrow 2f\left( 1 \right) + 3g\left( 4 \right) = 6 - 192 \\\ \Rightarrow 2f\left( 1 \right) + 3g\left( 4 \right) = - 186 \\\

Thus the value of the expression is -186 and this is the answer.

Note: If we have to find the values of the function at the same value of xx then we can combine both the functions to solve the expression. For example if we have to determine the value of the expression 2f(1)+3g(1)2f\left( 1 \right) + 3g\left( 1 \right) or the value of the expression 2f(4)+3g(4)2f\left( 4 \right) + 3g\left( 4 \right), we can combine both the functions before putting the value of xx and it will become:
2f(x)+3g(x)=2(3x)+3(4x2) 2f(x)+3g(x)=6x12x2  \Rightarrow 2f\left( x \right) + 3g\left( x \right) = 2\left( {3x} \right) + 3\left( { - 4{x^2}} \right) \\\ \Rightarrow 2f\left( x \right) + 3g\left( x \right) = 6x - 12{x^2} \\\
Now we can easily substitute the given value of xx.
But in expression 2f(1)+3g(4)2f\left( 1 \right) + 3g\left( 4 \right), we have to determine the values of the functions at different values of xx. That’s why we need to solve them separately and put those values in the expression as we did above in the solution.