Solveeit Logo

Question

Question: How do you find the value for \[\arctan (0)\] or \[{{\tan }^{-1}}(0)\] ?...

How do you find the value for arctan(0)\arctan (0) or tan1(0){{\tan }^{-1}}(0) ?

Explanation

Solution

To calculate this let suppose the value of this inverse function be xx. Then take the tan\tan both sides then using the property of inverse functions that is tan(tan1t)=t\tan ({{\tan }^{-1}}t)=t then just do simple algebraic operations.

Formula used: tan(tan1t)=t\tan ({{\tan }^{-1}}t)=t

Complete step by step solution:
First of all. Let suppose the value of tan1(0){{\tan }^{-1}}(0) be xx
tan10=x\Rightarrow {{\tan }^{-1}}0=x
Now taking tan\tan function both sides
tan(tan10)=tanx\Rightarrow \tan ({{\tan }^{-1}}0)=\tan x
And we know that tan(tan1t)=t\tan ({{\tan }^{-1}}t)=t
So, using this property
0=tanx\Rightarrow 0=\tan x
tanx=0\Rightarrow \tan x=0
Since xx is the output of the function tan1t{{\tan }^{-1}}t
And also, the range of this function is [0,π/2)[0,{}^{\pi }/{}_{2})
And we know that tan0=0\tan 0=0
tanx=tan0\Rightarrow \tan x=\tan 0
Now compare this value with the above-calculated value
x=0\Rightarrow x=0

Hence the value of tan1(0)=0{{\tan }^{-1}}(0)=0

Note:
When we have to find the value of the inverse function just assume a variable to the output value and then use the appropriate properties of inverse trigonometric functions. You should remember the values of trigonometric functions with their respective domain.