Solveeit Logo

Question

Question: How do you find the unit vector perpendicular to the plane: \(6x-2y+3z+8=0\)?...

How do you find the unit vector perpendicular to the plane: 6x2y+3z+8=06x-2y+3z+8=0?

Explanation

Solution

We first use the formula of finding the vector normal to a given plane. We put the values for 6x2y+3z+8=06x-2y+3z+8=0 in the equation to find the normal. We convert it into a vector form and then find the unit form by dividing it with the modulus value.

Complete answer:
The general formula for the plane equation of ax+by+cz=dax+by+cz=d, the vector normal to the plane is given by (a,b,c)\left( a,b,c \right).
Converting 6x2y+3z+8=06x-2y+3z+8=0 to its general form we get 6x2y+3z=86x-2y+3z=-8.
The value of the coefficients will be a=6,b=2,c=3,d=8a=6,b=-2,c=3,d=-8.
Therefore, the vector normal to the plane 6x2y+3z+8=06x-2y+3z+8=0 is (6,2,3)\left( 6,-2,3 \right).
The vector form with coordinates will be 6i^2j^+3k^6\widehat{i}-2\widehat{j}+3\widehat{k}.
Now we find the modulus value of the vector.
For A=ai^+bj^+ck^\overrightarrow{A}=a\widehat{i}+b\widehat{j}+c\widehat{k}, the modulus value will be A=a2+b2+c2\left| \overrightarrow{A} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}.
So, for 6i^2j^+3k^6\widehat{i}-2\widehat{j}+3\widehat{k}, the modulus value will be A=62+(2)2+32=49=7\left| \overrightarrow{A} \right|=\sqrt{{{6}^{2}}+{{\left( -2 \right)}^{2}}+{{3}^{2}}}=\sqrt{49}=7.
Now the unit vector along 6i^2j^+3k^6\widehat{i}-2\widehat{j}+3\widehat{k} will be AA=6i^2j^+3k^7=67i^27j^+37k^\dfrac{\overrightarrow{A}}{\left| \overrightarrow{A} \right|}=\dfrac{6\widehat{i}-2\widehat{j}+3\widehat{k}}{7}=\dfrac{6}{7}\widehat{i}-\dfrac{2}{7}\widehat{j}+\dfrac{3}{7}\widehat{k}.
Therefore, unit vector perpendicular to plane 6x2y+3z+8=06x-2y+3z+8=0 will be 67i^27j^+37k^\dfrac{6}{7}\widehat{i}-\dfrac{2}{7}\widehat{j}+\dfrac{3}{7}\widehat{k}.

Note:
The normal vector, often simply called the "normal," to a surface is always perpendicular at a fixed point. Therefore, instead of taking (a,b,c)\left( a,b,c \right) for ax+by+cz=dax+by+cz=d we can define the normal as partial derivatives and taking the determinant form of N=fx(x0,y0) fy(x0,y0) 1 N=\left| \begin{matrix} {{f}_{x}}\left( {{x}_{0}},{{y}_{0}} \right) \\\ {{f}_{y}}\left( {{x}_{0}},{{y}_{0}} \right) \\\ 1 \\\ \end{matrix} \right| where the fx(x0,y0){{f}_{x}}\left( {{x}_{0}},{{y}_{0}} \right) and fy(x0,y0){{f}_{y}}\left( {{x}_{0}},{{y}_{0}} \right) are the partial derivatives for main function f(x,y)f\left( x,y \right) at point (x0,y0)\left( {{x}_{0}},{{y}_{0}} \right).