Solveeit Logo

Question

Question: How do you find the Taylor expansion of\[\sqrt x \]at \( x = 1 \) ?...

How do you find the Taylor expansion ofx\sqrt x at x=1x = 1 ?

Explanation

Solution

Hint : In order to calculate the Taylor polynomial of the f(x)f(x) which is centred at x=a=1x = a = 1 ,use the formula of Taylor polynomial Tn(x)=i=0nf(i)(a)i!(xa)i{T_n}(x) = \sum\limits_{i = 0}^n {\dfrac{{{f^{(i)}}(a)}}{{i!}}{{(x - a)}^i}} ,up to the value of n=n = \infty but for simplicity we find terms up to n=3n = 3 .Find the derivative of the function up to the order 3 using the property of ddx(xn)=nxn1\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}} and chaining rule .Putting all the values back into the formula will give your required result.

Complete step-by-step answer :
We are given a function f(x)=xf(x) = \sqrt x
Let’s have a look into the Taylor formula which we are going to use,
Tn(x)=i=0nf(i)(a)i!(xa)i{T_n}(x) = \sum\limits_{i = 0}^n {\dfrac{{{f^{(i)}}(a)}}{{i!}}{{(x - a)}^i}}
According to our question, Taylor Polynomial for ff is centred at x=a=1x = a = 1
In order to calculate the Taylor expansion of ff ,Since we have not given any information about upto which term we have to expand ,so we have to extend summation up to the term having n=n = \infty
But as we know that it is not actually possible to go up to n=n = \infty .SO for the simplicity we will define the starting 3 terms of the expansion
If we closely look the formula, we conclude that the each term in the formula requires:
1.A derivative of order (i). The ii above the f looks like an exponent but its is not .It is actually representing the order of the derivative.
2.Putting the value of aa in the derivatives.
3.Then Dividing every term by the factorial number i!i!
4.Finally Multiplying by (xa)(x - a) raised to the power ii .
Let’s Expand our formula up to n=3n = 3 ,we get
T3(x)=f(a)+f(1)(a)1!(xa)1+f(2)(a)2!(xa)2+f(3)(a)3!(xa)3....... T3(x)=f(1)+f(1)(1)1!(x1)1+f(2)(1)2!(x1)2+f(3)(1)3!(x1)3...........  {T_3}(x) = f(a) + \dfrac{{{f^{(1)}}(a)}}{{1!}}{(x - a)^1} + \dfrac{{{f^{(2)}}(a)}}{{2!}}{(x - a)^2} + \dfrac{{{f^{(3)}}(a)}}{{3!}}{(x - a)^3}....... \\\ {T_3}(x) = f(1) + \dfrac{{{f^{(1)}}(1)}}{{1!}}{(x - 1)^1} + \dfrac{{{f^{(2)}}(1)}}{{2!}}{(x - 1)^2} + \dfrac{{{f^{(3)}}(1)}}{{3!}}{(x - 1)^3}........... \\\ ----------(1)
Finding the vales of f(1)(1){f^{(1)}}(1) , f(2)(1){f^{(2)}}(1) , f(3)(1){f^{(3)}}(1) , f(1)f(1)
f(x)=xf(1)=1=1f(x) = \sqrt x \Rightarrow f(1) = \sqrt 1 = 1
Let’s find out the derivatives with respect to x up to order 3, using the property of derivative that ddx(xn)=nxn1\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}} .
1st derivative:
f(x)=f1(x)=12x12f1(1)=12f'(x) = {f^1}(x) = \dfrac{1}{2}{x^{ - \dfrac{1}{2}}}\,\,\,\,\,\,\, \Rightarrow {f^1}(1) = \dfrac{1}{2}
2nd derivative:
f(x)=f2(x)=14x32f2(1)=14f''(x) = {f^2}(x) = - \dfrac{1}{4}{x^{ - \dfrac{3}{2}}}\,\,\,\,\,\,\,\, \Rightarrow {f^2}(1) = - \dfrac{1}{4}
3rd derivative:
f(x)=f3(x)=38x52f3(1)=38f'''(x) = {f^3}(x) = \dfrac{3}{8}{x^{ - \dfrac{5}{2}}}\,\,\,\,\,\, \Rightarrow {f^3}(1) = \dfrac{3}{8}

Putting vales of f(1)(1){f^{(1)}}(1) , f(2)(1){f^{(2)}}(1) , f(3)(1){f^{(3)}}(1) , f(1)f(1) all together in our original formula i.e. equation (1),we get
T3(x)=f(1)+f(1)(1)1!(x1)1+f(2)(1)2!(x1)2+f(3)(1)3!(x1)3......... =1+12(x1)1+14(x1)2+38(x1)3........... =1+12(x1)114(x1)2+38(x1)3.........  {T_3}(x) = f(1) + \dfrac{{{f^{(1)}}(1)}}{{1!}}{(x - 1)^1} + \dfrac{{{f^{(2)}}(1)}}{{2!}}{(x - 1)^2} + \dfrac{{{f^{(3)}}(1)}}{{3!}}{(x - 1)^3}......... \\\ = 1 + \dfrac{1}{2}{(x - 1)^1} + \dfrac{{ - 1}}{4}{(x - 1)^2} + \dfrac{3}{8}{(x - 1)^3}........... \\\ = 1 + \dfrac{1}{2}{(x - 1)^1} - \dfrac{1}{4}{(x - 1)^2} + \dfrac{3}{8}{(x - 1)^3}......... \\\
Therefore, we have successfully found out the Taylor expansion of a given function.
So, the correct answer is “ 1+12(x1)114(x1)2+38(x1)31 + \dfrac{1}{2}{(x - 1)^1} - \dfrac{1}{4}{(x - 1)^2} + \dfrac{3}{8}{(x - 1)^3} ”.

Note : Tn(x)=i=0nf(i)(a)i!(xa)i{T_n}(x) = \sum\limits_{i = 0}^n {\dfrac{{{f^{(i)}}(a)}}{{i!}}{{(x - a)}^i}}
ddx(lnx)=1x\dfrac{d}{{dx}}(\ln x) = \dfrac{1}{x}
ddx(xn)=nxn1\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}
Factorial: The continued product of first n natural numbers is called the “n factorial “and denoted by n!n! .
1.Don’t forget to cross-check your answer at least once.
2.Meaning of Zero factorial is senseless to define it as the product of integers from 1 to zero. So, we define it as 0!=10! = 1 .
3.Factorial of any number can calculated as n!=n(n1)(n2)(n3).......(2)(1)n! = n(n - 1)(n - 2)(n - 3).......(2)(1)