Solveeit Logo

Question

Question: How do you find the solution to \(3{\tan ^2}\theta = 1\) if \(0 \leqslant \theta < {360^ \circ }\)?...

How do you find the solution to 3tan2θ=13{\tan ^2}\theta = 1 if 0θ<3600 \leqslant \theta < {360^ \circ }?

Explanation

Solution

First, divide both sides of the equation by 33 and take square root on both sides of the equation, Then, find the values of θ\theta satisfying tanθ=13\tan \theta = \dfrac{1}{{\sqrt 3 }} using trigonometric properties.
Next, find the values of θ\theta satisfying tanθ=13\tan \theta = - \dfrac{1}{{\sqrt 3 }} using trigonometric properties. Next, find all values of θ\theta in the interval 0θ<3600 \leqslant \theta < {360^ \circ }. Then, we will get all solutions of the given equation in the given interval.

Formula used:
tanπ6=13\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}
tan(πx)=tanx\tan \left( {\pi - x} \right) = - \tan x
tan(2πx)=tanx\tan \left( {2\pi - x} \right) = - \tan x

Complete step by step answer:
Given equation: 3tan2θ=13{\tan ^2}\theta = 1
We have to find all possible values of θ\theta satisfying given equation in the interval 0θ<3600 \leqslant \theta < {360^ \circ }.
Divide both sides of the equation by 33, we get
tan2θ=13{\tan ^2}\theta = \dfrac{1}{3}
Take square root on both sides of the equation, we get
tanθ=±13\tan \theta = \pm \dfrac{1}{{\sqrt 3 }}
First, we will find the values of θ\theta satisfying tanθ=13\tan \theta = \dfrac{1}{{\sqrt 3 }}.
So, take the inverse tan of both sides of the equation to extract θ\theta from inside the tan.
θ=arctan(13)\theta = \arctan \left( {\dfrac{1}{{\sqrt 3 }}} \right)
Since, the exact value of arctan(13)=π6\arctan \left( {\dfrac{1}{{\sqrt 3 }}} \right) = \dfrac{\pi }{6}.
θ=π6\Rightarrow \theta = \dfrac{\pi }{6}
Since, the tan function is positive in the first and third quadrants.
So, to find the second solution, add the reference angle from π\pi to find the solution in the fourth quadrant.
θ=π+π6\theta = \pi + \dfrac{\pi }{6}
θ=7π6\Rightarrow \theta = \dfrac{{7\pi }}{6}
Since, the period of the tanθ\tan \theta function is π\pi so values will repeat every π\pi radians in both directions.
θ=π6+nπ,7π6+nπ\theta = \dfrac{\pi }{6} + n\pi ,\dfrac{{7\pi }}{6} + n\pi , for any integer nn.
Now, we will find the values of θ\theta satisfying tanθ=13\tan \theta = - \dfrac{1}{{\sqrt 3 }}…(i)
So, using the property tan(πx)=tanx\tan \left( {\pi - x} \right) = - \tan x and tanπ6=13\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }} in equation (i).
tanθ=tanπ6\Rightarrow \tan \theta = - \tan \dfrac{\pi }{6}
tanθ=tan(ππ6)\Rightarrow \tan \theta = \tan \left( {\pi - \dfrac{\pi }{6}} \right)
θ=5π6\Rightarrow \theta = \dfrac{{5\pi }}{6}
Now, using the property tan(2πx)=tanx\tan \left( {2\pi - x} \right) = - \tan x and tanπ6=13\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }} in equation (i).
tanθ=tanπ6\Rightarrow \tan \theta = - \tan \dfrac{\pi }{6}
tanθ=tan(2ππ6)\Rightarrow \tan \theta = \tan \left( {2\pi - \dfrac{\pi }{6}} \right)
θ=11π6\Rightarrow \theta = \dfrac{{11\pi }}{6}
Since, the period of the tanθ\tan \theta function is π\pi so values will repeat every π\pi radians in both directions.
θ=5π6+nπ,11π6+nπ\theta = \dfrac{{5\pi }}{6} + n\pi ,\dfrac{{11\pi }}{6} + n\pi , for any integer nn.
Now, find all values of θ\theta in the interval 0θ<3600 \leqslant \theta < {360^ \circ }.
Since, it is given that θ[0,360)\theta \in \left[ {0,{{360}^ \circ }} \right), hence put n=0n = 0 in the general solution.
So, putting n=0n = 0 in θ=π6+nπ,7π6+nπ\theta = \dfrac{\pi }{6} + n\pi ,\dfrac{{7\pi }}{6} + n\pi , we get
θ=π6,7π6\theta = \dfrac{\pi }{6},\dfrac{{7\pi }}{6}
Now, putting n=0n = 0 in θ=5π6+nπ,11π6+nπ\theta = \dfrac{{5\pi }}{6} + n\pi ,\dfrac{{11\pi }}{6} + n\pi ,we get
θ=5π6,11π6\theta = \dfrac{{5\pi }}{6},\dfrac{{11\pi }}{6}
Thus, θ=π6,5π6,7π6,11π6\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{11\pi }}{6} or θ=30,150,210,330\theta = {30^ \circ },{150^ \circ },{210^ \circ },{330^ \circ }.

Hence, θ=π6,5π6,7π6,11π6\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{11\pi }}{6} or θ=30,150,210,330\theta = {30^ \circ },{150^ \circ },{210^ \circ },{330^ \circ } are solutions of the given equation in the interval 0θ<3600 \leqslant \theta < {360^ \circ }.

Note: In above question, we can find the solutions of given equation by plotting the equation, 3tan2θ=13{\tan ^2}\theta = 1 on graph paper and determine all solutions which lie in the interval, 0θ<3600 \leqslant \theta < {360^ \circ }.

From the graph paper, we can see that there are four values of θ\theta in the interval 0θ<3600 \leqslant \theta < {360^ \circ }.
So, these will be the solutions of the given equation in the given interval.
Final solution: Hence, θ=π6,5π6,7π6,11π6\theta = \dfrac{\pi }{6},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{11\pi }}{6} or θ=30,150,210,330\theta = {30^ \circ },{150^ \circ },{210^ \circ },{330^ \circ } are solutions of the given equation in the interval 0θ<3600 \leqslant \theta < {360^ \circ }.