Solveeit Logo

Question

Question: How do you find the sixth roots of \(64i\)? \[\]...

How do you find the sixth roots of 64i64i? $$$$

Explanation

Solution

We find the sixth root of ii using Demoivre’s theorem for n=6n=6 (cosθ+isinθ)n=cosnθ+isinnθ{{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos n\theta +i\sin n\theta and then assume the root as z=reiθ=r(cosθ+isinθ)z=r{{e}^{i\theta }}=r\left( \cos \theta +i\sin \theta \right). We design the equation z6=64i{{z}^{6}}={{64}^{i}} . We take r=2r=2 and find a solution for angle θ\theta . We use sine difference of angle formula sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B and cosine difference of angle cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$$$$

Complete step by step answer:
We know the complex number zz can also be represented in the polar form
z=reiθ=r(cosθ+isinθ)z=r{{e}^{i\theta }}=r\left( \cos \theta +i\sin \theta \right)
We know from Demoivre’s theorem that for real angle θ\theta and real integral exponent nn as
(cosθ+isinθ)n=cosnθ+isinnθ{{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos n\theta +i\sin n\theta
Let us find six roots of ii. We take n=6n=6 in the above step and equate to ii to have

& {{\left( \cos \theta +i\sin \theta \right)}^{6}}=\cos 6\theta +i\sin 6\theta =i. \\\ & \Rightarrow \cos 6\theta +i\sin 6\theta =0+i\cdot 1 \\\ & \Rightarrow \cos 6\theta +i\sin 6\theta =0\cdot \cos \left( \dfrac{\pi }{2} \right)+i\sin \left( \dfrac{\pi }{2} \right)....\left( 1 \right) \\\ \end{aligned}$$ We equate imaginary parts from both sides to have; $$\begin{aligned} & \sin \left( 6\theta \right)=\sin \left( \dfrac{\pi }{2} \right) \\\ & \Rightarrow 6\theta =\dfrac{\pi }{2} \\\ & \Rightarrow \theta =\dfrac{\pi }{12} \\\ \end{aligned}$$ So our principal angle is $\theta =\dfrac{\pi }{12}$. We can find the other angle by using periodicity of sine so that we can add multiples of $\dfrac{2\pi }{6}=\dfrac{\pi }{3}$ to satisfy the equation (1) as $$\begin{aligned} & \cos \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)+i\sin \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)=\cos \left( \dfrac{\pi }{2}+2k\pi \right)+i\sin \left( \dfrac{\pi }{2}+2k\pi \right) \\\ & \Rightarrow \cos \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)+i\sin \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)=i,\left( k=1,2,3,4,5,6 \right) \\\ \end{aligned}$$ Let us assume the sixth roots of $64i$ is $z={{e}^{i\theta }}$ which means the solutions of the equation $${{z}^{6}}=64i$$ We put $z=r{{e}^{i\theta }}=r\left( \cos \theta +i\sin \theta \right)$ in the above step to have $$\begin{aligned} & {{z}^{6}}=64i \\\ & \Rightarrow {{\left( r\left( \cos \theta +i\sin \theta \right) \right)}^{6}}=64i \\\ & \Rightarrow {{r}^{6}}{{\left( \cos \theta +i\sin \theta \right)}^{6}}=64i \\\ \end{aligned}$$ We see the above equation is valid only for $r=2$ since $r$ is always a positive and real number. We have already obtained values of $\theta $from sixth roots of $i$.So the sixth roots of $64i$ is $$\begin{aligned} & z=2\left( \cos \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right)+i\sin \left( \dfrac{\pi }{12}+\dfrac{k\pi }{3} \right) \right) \\\ & \Rightarrow z=2\left( \cos \left( \dfrac{1+4k}{12}\pi \right)+i\sin \left( \dfrac{1+4k}{12}\pi \right) \right)\left( k=0,1,2,3,4,5 \right) \\\ \end{aligned}$$ So the possible value of $\theta $ are $$\theta =\dfrac{\pi }{12},\dfrac{5\pi }{12},\dfrac{9\pi }{12},\dfrac{13\pi }{12}=\pi +\dfrac{\pi }{12},\dfrac{17\pi }{12}=\pi +\dfrac{5\pi }{12},\dfrac{21\pi }{12}=\pi +\dfrac{9\pi }{12}$$ So by periodicity the solutions are $$\pm 2\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right),\pm 2\left( \cos \left( \dfrac{5\pi }{12} \right)+i\sin \left( \dfrac{5\pi }{12} \right) \right),\pm 2\left( \cos \left( \dfrac{9\pi }{12} \right)+i\sin \left( \dfrac{9\pi }{12} \right) \right)$$ We use the difference of angle formula to find the cosine value of $\dfrac{\pi }{12},\dfrac{5\pi }{12}$. We have $$\begin{aligned} & \sin \left( \dfrac{\pi }{12} \right)=\sin \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{3}\cos \dfrac{\pi }{4}-\cos \dfrac{\pi }{3}\sin \dfrac{\pi }{4}=\dfrac{\sqrt{3}}{2}\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\dfrac{\sqrt{2}}{2}=\dfrac{1}{4}\left( \sqrt{6}-\sqrt{2} \right) \\\ & \cos \left( \dfrac{\pi }{12} \right)=\cos \left( \dfrac{\pi }{3}-\dfrac{\pi }{4} \right)=\cos \dfrac{\pi }{3}\cos \dfrac{\pi }{4}+\sin \dfrac{\pi }{3}\sin \dfrac{\pi }{4}=\dfrac{1}{2}\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{3}}{2}\dfrac{\sqrt{2}}{2}=\dfrac{1}{4}\left( \sqrt{6}+\sqrt{2} \right) \\\ \end{aligned}$$ We use complementary angle relation between sine and cosine to have; $$\begin{aligned} & \sin \left( \dfrac{5\pi }{12} \right)=\sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{12} \right)=\cos \dfrac{\pi }{12}=\dfrac{1}{4}\left( \sqrt{6}+2 \right) \\\ & \cos \left( \dfrac{5\pi }{12} \right)=\cos \left( \dfrac{\pi }{2}-\dfrac{\pi }{12} \right)=\sin \dfrac{\pi }{12}=\dfrac{1}{4}\left( \sqrt{6}-2 \right) \\\ \end{aligned}$$ We know from trigonometric table that $$\begin{aligned} & \sin \left( \dfrac{9\pi }{12} \right)=\sin \left( \dfrac{3\pi }{4} \right)=\dfrac{1}{\sqrt{2}} \\\ & \cos \left( \dfrac{9\pi }{12} \right)=\cos \left( \dfrac{3\pi }{4} \right)=\dfrac{-1}{\sqrt{2}} \\\ \end{aligned}$$ So the sixth roots of $64i$ are $$\begin{aligned} & \pm 2\left( \cos \left( \dfrac{\pi }{12} \right)+i\sin \left( \dfrac{\pi }{12} \right) \right)=\pm \dfrac{1}{2}\left( \left( \sqrt{6}+\sqrt{2} \right)+i\left( \sqrt{6}-\sqrt{2} \right) \right) \\\ & \pm 2\left( \cos \left( \dfrac{5\pi }{12} \right)+i\sin \left( \dfrac{5\pi }{12} \right) \right)=\pm \dfrac{1}{2}\left( \left( \sqrt{6}-\sqrt{2} \right)+i\left( \sqrt{6}+\sqrt{2} \right) \right) \\\ & \pm 2\left( \cos \left( \dfrac{9\pi }{12} \right)+i\sin \left( \dfrac{9\pi }{12} \right) \right)=\pm \sqrt{2}\left( 1+i \right) \\\ \end{aligned}$$ **Note:** We note that if all the roots of equation ${{z}^{n}}=a$ where $a$ is any complex number and $n$is an integer, are complex then they occur in $\dfrac{n}{2}$ pairs of conjugates in the form $\left( a+ib \right),\left( a-ib \right)$. Here we obtained $\dfrac{6}{2}=3$pairs of conjugate roots. We should also note that two complex numbers are equal if their real and imaginary parts are equal.