Solveeit Logo

Question

Question: How do you find the second derivative of \(\ln \left( \dfrac{x+1}{x-1} \right)\) ?...

How do you find the second derivative of ln(x+1x1)\ln \left( \dfrac{x+1}{x-1} \right) ?

Explanation

Solution

We recall chain rule and quotient rule of differentiation. We use the logarithmic identity of quotient log(ab)=logalogb\log \left( \dfrac{a}{b} \right)=\log a-\log b and find the first derivative using chain rule that is dydx=dydududx\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}and then second derivative using quotient rule ddx(uv)=vdudxudvdxv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}.

Complete step-by-step answer:
We know that if the real valued functions f(x),g(x)f\left( x \right),g\left( x \right) are defined within sets f:ABf:A\to B and g:BCg:B\to C then the composite function from A to C is defend as g(f(x))g\left( f\left( x \right) \right) within sets gof:ACgof:A\to C. If we denote g(f(x))=yg\left( f\left( x \right) \right)=y and f(x)=uf\left( x \right)=u then we can differentiate the composite function using chain rule as
ddxg(f(x))=dydx=dydu×dudx\dfrac{d}{dx}g\left( f\left( x \right) \right)=\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}
We also know from quotient rule of differentiation that if u(x),v(x)u\left( x \right),v\left( x \right) are two real valued function with the condition v(x)0v\left( x \right)\ne 0 then we can differentiate their quotient as
ddx(uv)=vdudxudvdxv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}
We are given the function ln(x+1x1)\ln \left( \dfrac{x+1}{x-1} \right) to differentiate. Let use the logarithmic identity of quotient log(ab)=logalogb\log \left( \dfrac{a}{b} \right)=\log a-\log b for a=x+1,b=x1a=x+1,b=x-1 to have
ln(x+1x1)=ln(x+1)ln(x1)\ln \left( \dfrac{x+1}{x-1} \right)=\ln \left( x+1 \right)-\ln \left( x-1 \right)
Let us denote y=,ln(x+1)ln(x1)w=ln(x+1),z=ln(x1)y=,\ln \left( x+1 \right)-\ln \left( x-1 \right)w=\ln \left( x+1 \right),z=\ln \left( x-1 \right). So we have
y=wzy=w-z
We differentiate both sides of above equation to have
dydx=dwdxdzdx\Rightarrow \dfrac{dy}{dx}=\dfrac{dw}{dx}-\dfrac{dz}{dx}
We use chain rule taking u=x+1,v=x1u=x+1,v=x-1 to have

& \Rightarrow \dfrac{dy}{dx}=\dfrac{dw}{du}\cdot \dfrac{du}{dx}-\dfrac{dw}{dv}\cdot \dfrac{dv}{dx} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{d\left( x+1 \right)}\ln \left( x+1 \right)\cdot \dfrac{d}{dx}\left( x+1 \right)-\dfrac{d}{d\left( x-1 \right)}\ln \left( x-1 \right)\cdot \dfrac{d}{dx}\left( x-1 \right) \\\ \end{aligned}$$ We use the standard differentiation of logarithmic function $\dfrac{d}{dt}\log \left( t \right)=\dfrac{1}{t}$ for $t=x+1,t=x-1$ in the above step to have $$\begin{aligned} & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{x+1}\cdot 1-\dfrac{1}{x-1}\cdot 1 \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{x+1}-\dfrac{1}{x-1} \\\ \end{aligned}$$ We find the second derivative differentiating the first derivative again with respect to $x$. We have; $$\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{1}{x+1}-\dfrac{1}{x-1} \right)$$ We use sum rule of differentiation in the above step to have $$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{1}{x+1} \right)-\dfrac{d}{dx}\left( \dfrac{1}{x-1} \right)$$ We use the quotient rule of differentiation for $u=1,v=x+1$ in the first term and $u=1,v=x-1$ in the second term of the right hand side. We have $$\begin{aligned} & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{1}{x+1} \right)-\dfrac{d}{dx}\left( \dfrac{1}{x-1} \right) \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( x+1 \right)\dfrac{d}{dx}1-1\cdot \dfrac{d}{dx}\left( x+1 \right)}{{{\left( x+1 \right)}^{2}}}-\dfrac{\left( x-1 \right)\dfrac{d}{dx}1-1\cdot \dfrac{d}{dx}\left( x-1 \right)}{{{\left( x-1 \right)}^{2}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( x+1 \right)0-1\cdot 1}{{{\left( x+1 \right)}^{2}}}-\dfrac{\left( x-1 \right)0-1\cdot 1}{{{\left( x-1 \right)}^{2}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{1}{{{\left( x+1 \right)}^{2}}}+\dfrac{1}{{{\left( x-1 \right)}^{2}}} \\\ \end{aligned}$$ We add the fractional expression in the right hand side to have $$\begin{aligned} & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{\left( x+1 \right)}^{2}}-{{\left( x-1 \right)}^{2}}}{{{\left( x+1 \right)}^{2}}{{\left( x-1 \right)}^{2}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{\left( x+1 \right)}^{2}}-{{\left( x-1 \right)}^{2}}}{{{\left( \left( x+1 \right)\left( x-1 \right) \right)}^{2}}} \\\ \end{aligned}$$ We use the algebraic identity ${{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab$ in the numerator and the algebraic identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ for $a=x,b=1$ in the denominator of above step to have the second derivative ; $$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{4\cdot x\cdot 1}{{{\left( {{x}^{2}}-1 \right)}^{2}}}=\dfrac{4x}{{{\left( {{x}^{2}}-1 \right)}^{2}}}$$ **Note:** We know that logarithmic function is only defined for positive real numbers. So we have$\dfrac{x+1}{x-1}\ne 0$. So we have$x\ne -1,1$. So our second derivative is well defined because${{x}^{2}}-1\ne 0$. We can differentiate without using the quotient rule with $\dfrac{d}{dt}\left( \dfrac{1}{t} \right)=-\dfrac{1}{{{t}^{2}}}$ for $t=x-1,x+1$. If $f\left( x \right),g\left( x \right)$ are real valued functions then the sum rule is given by $\dfrac{d}{dx}\left( f\left( x \right)+g\left( x \right) \right)=\dfrac{d}{dx}f\left( x \right)+\dfrac{d}{dx}g\left( x \right)$.