Solveeit Logo

Question

Question: How do you find the scalar and vector projections of \(b\) onto a given \(a = < 3,\; - 6,\;2 > ,\;b ...

How do you find the scalar and vector projections of bb onto a given a=<3,  6,  2>,  b=<1,  1,  1>?a = < 3,\; - 6,\;2 > ,\;b = < 1,\;1,\;1 > ?

Explanation

Solution

Scalar projection of bb onto aa is given as a.  ba\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{\left| a \right|}} and vector projection of bb onto aa is given as a.  b(a)2a\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{{{\left( {\left| a \right|} \right)}^2}}}\overrightarrow a
Where a.  b\overrightarrow a .\;\overrightarrow b represents the dot product between a  and  ba\;{\text{and}}\;b, a\left| a \right| represents the magnitude of the vector aa.
Use the above information to find the respective scalar and vector projections.

Complete step by step answer:
In order to find the scalar projection of bb onto aa we have to first find the dot product of a  and  ba\;{\text{and}}\;b. Dot product of two vectors x=<a,  b,  c>  and  y=<e,  f,  g>x = < a,\;b,\;c > \;{\text{and}}\;y = < e,\;f,\;g > is given as follows
x.y=<a,  b,  c>.<e,  f,  g>=(a×e+b×f+c×g)\overrightarrow x .\overrightarrow y = < a,\;b,\;c > . < e,\;f,\;g > = (a \times e + b \times f + c \times g)
From the above formula of dot product performing the dot product of a  and  ba\;{\text{and}}\;b, we will get,
a.  b=<3,  6,  2>.<1,  1,  1>=(3×1+(6)×1+2×1)=36+2=1 a.  b=1 \overrightarrow a .\;\overrightarrow b = < 3,\; - 6,\;2 > . < 1,\;1,\;1 > = \left( {3 \times 1 + ( - 6) \times 1 + 2 \times 1} \right) = 3 - 6 + 2 = - 1 \\\ \Rightarrow \overrightarrow a .\;\overrightarrow b = - 1 \\\
Now we have to find the magnitude of aa in order to find the scalar projection of bb onto aa. Magnitude of a vector x=<a,  b,  c>x = < a,\;b,\;c > is given as
x=a2+b2+c2\left| x \right| = \left| {\sqrt {{a^2} + {b^2} + {c^2}} } \right|
Using this to find the magnitude of a=<3,  6,  2>a = < 3,\; - 6,\;2 > , we will get
a=32+(6)2+22=9+36+4=49=±7=7\left| a \right| = \left| {\sqrt {{3^2} + {{( - 6)}^2} + {2^2}} } \right| = \left| {\sqrt {9 + 36 + 4} } \right| = \left| {\sqrt {49} } \right| = \left| { \pm 7} \right| = 7
Scalar projection of a vector x=<a,  b,  c>x = < a,\;b,\;c > on to the vector y=<e,  f,  g>y = < e,\;f,\;g > is given as y.  xy\dfrac{{\overrightarrow y .\;\overrightarrow x }}{{\left| y \right|}}
With the use of this formula the scalar projection of bb onto aa will be given as a.  ba\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{\left| a \right|}}
Putting the values we will get
a.  ba=17\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{\left| a \right|}} = \dfrac{{ - 1}}{7}
Now we will find the vector projection of bb onto aa
Vector projection of a vector x=<a,  b,  c>x = < a,\;b,\;c > on to the vector y=<e,  f,  g>y = < e,\;f,\;g > is given as y.  x(y)2y\dfrac{{\overrightarrow y .\;\overrightarrow x }}{{{{\left( {\left| y \right|} \right)}^2}}}\overrightarrow y
Therefore vector projection of bb onto aa will be given as a.  b(a)2a\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{{{\left( {\left| a \right|} \right)}^2}}}\overrightarrow a
Hence we are familiar to these terms in the vector projection of bb onto aa
So directly putting their values we will get
a.  b(a)2a=172<3,  6,  2>=149<3,  6,  2>\therefore\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{{{\left( {\left| a \right|} \right)}^2}}}\overrightarrow a = \dfrac{{ - 1}}{{{7^2}}} < 3,\; - 6,\;2 > = \dfrac{{ - 1}}{{49}} < 3,\; - 6,\;2 >

Therefore the required scalar and vector projections of the given vectors are 17  and  149<3,  6,  2>\dfrac{{ - 1}}{7}\;{\text{and}}\;\dfrac{{ - 1}}{{49}} < 3,\; - 6,\;2 > respectively.

Note: The given vectors a=<3,  6,  2>  and  b=<1,  1,  1>a = < 3,\; - 6,\;2 > \;{\text{and}}\;b = < 1,\;1,\;1 > can also be written as a=(3i^,  6j^,  2k^)  and  b=(i^,  j^,  k^)a = \left( {3\widehat {\text{i}},\; - 6\widehat {\text{j}},\;2\widehat {\text{k}}} \right)\;{\text{and}}\;b = \left( {\widehat {\text{i}},\;\widehat {\text{j}},\;\widehat {\text{k}}} \right) where it 3i^3\widehat {\text{i}} is read as “3 i-cap” it is also a form vector notation. Also the actual formula for dot product of two vectors x  and  y\overrightarrow x \;{\text{and}}\;\overrightarrow y is given as follows
x.y=xycosθ,  where  θ\overrightarrow x .\overrightarrow y = xy\cos \theta ,\;{\text{where}}\;\theta is the acute angle between the two vectors.