Solveeit Logo

Question

Question: How do you find the Riemann sum for \(f(x) = {x^2} + 3x\) over the interval \([0,8]\)?...

How do you find the Riemann sum for f(x)=x2+3xf(x) = {x^2} + 3x over the interval [0,8][0,8]?

Explanation

Solution

In mathematics, Riemann sum is defined as a certain kind of approximation of an integral by a finite sum. In this question, we need to find the Riemann sum for f(x)=x2+3xf(x) = {x^2} + 3x over the interval [0,8][0,8] for which we will use the formula, limni=1nf(xi)Δx=abf(x)dx\mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {f({x_i})\Delta x = \int\limits_a^b {f(x)dx} }

Complete step by step solution:
According to the given information, we have to evaluate the Riemann sum for f(x)=x2+3xf(x) = {x^2} + 3x.
The formula we are using to do so looks like, limni=1nf(xi)Δx=abf(x)dx\mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {f({x_i})\Delta x = \int\limits_a^b {f(x)dx} }
Thus, when we put all the values, the expression becomes
08(x2+3x)dx\int\limits_0^8 {({x^2} + 3x)dx}
We need to use this information to plug in values into our Riemann sum formula.
Δx=ban\Delta x = \dfrac{{b - a}}{n}
xi=a+iΔx{x_i} = a + i\Delta x
Thus,
Δx=80n=8n\Delta x = \dfrac{{8 - 0}}{n} = \dfrac{8}{n}
And on further evaluation we get,
xi=8in{x_i} = \dfrac{{8i}}{n}
So, in order to get a Riemann sum:
limni=1n8n[(8in)2+3(8in)]\mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\dfrac{8}{n}[{{(\dfrac{{8i}}{n})}^2} + 3(\dfrac{{8i}}{n})]}
limni=1n8n[(64n2)i2+(24n)i]\Rightarrow \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\dfrac{8}{n}[(\dfrac{{64}}{{{n^2}}}){i^2} + (\dfrac{{24}}{n})i]}
We need to note that since ii is our variable and nn is our constant, we can pull those to the front.
The expression then becomes,
limn[512n3i=1ni2+192n2i=1ni]\Rightarrow \mathop {\lim }\limits_{n \to \infty } [\dfrac{{512}}{{{n^3}}}\sum\limits_{i = 1}^n {{i^2} + \dfrac{{192}}{{{n^2}}}\sum\limits_{i = 1}^n i ]}
Recall from summation formulas:
i=1ni=n(n+1)2\sum\limits_{i = 1}^n i = \dfrac{{n(n + 1)}}{2}
And, i=1ni2=n(n+1)(2n+1)6\sum\limits_{i = 1}^n {{i^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}}
On substituting the obtained values, we get
limn[512n3i=1nn(n+1)(2n+1)6+192n2i=1nn(n+1)2]\Rightarrow \mathop {\lim }\limits_{n \to \infty } [\dfrac{{512}}{{{n^3}}}\sum\limits_{i = 1}^n {\dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{192}}{{{n^2}}}\sum\limits_{i = 1}^n {\dfrac{{n(n + 1)}}{2}} ]}
Now, the degree of the denominators are the same as the numerators, so it will result in the sum of two ratios.

limn8003266.7 \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{800}}{3} \approx 266.7

Note:
A Riemann sum is defined as a certain kind of approximation of an integral by a finite sum. The formula used to evaluate the Riemann sum is, limni=1nf(xi)Δx=abf(x)dx\mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {f({x_i})\Delta x = \int\limits_a^b {f(x)dx} } .