Solveeit Logo

Question

Question: How do you find the region inside cardioid \( r = 1 + \cos \theta \) and outside the circle \( r = 3...

How do you find the region inside cardioid r=1+cosθr = 1 + \cos \theta and outside the circle r=3cosθr = 3\cos \theta ?

Explanation

Solution

Hint : In this question, we are given the equation of two curves and we have to find their common area based on the given condition. For that, we first need to graph the given functions and then shade the required area from the given information. We will find the area of the shaded region by using integration over limits.

Complete step-by-step answer :
To find the region inside cardioid r=1+cosθr = 1 + \cos \theta and outside the circle r=3cosθr = 3\cos \theta , we will first draw both of them on the same plane and then find their point of intersection. Then using the given information, we will shade the region whose area we have to find.
The point of intersection of r=1+cosθr = 1 + \cos \theta and r=3cosθr = 3\cos \theta is
1+cosθ=3cosθ 1=2cosθ cosθ=12 θ=cos1(12) θ=±π3   1 + \cos \theta = 3\cos \theta \\\ 1 = 2\cos \theta \\\ \Rightarrow \cos \theta = \dfrac{1}{2} \\\ \Rightarrow \theta = {\cos ^{ - 1}}(\dfrac{1}{2}) \\\ \Rightarrow \theta = \pm \dfrac{\pi }{3} \;
So, two curves intersect at θ=±π3\theta = \pm \dfrac{\pi }{3}

Area of the cardioid,

A1=π3π12(1+cosθ)2dθ=12π3π(1+cos2θ+2cosθ)dθ=12π3π(1+cos2θ+12+2cosθ)dθ A1=12[θ+12(sin2θ2+θ)+2sinθ]π3π A1=12[3θ2+sin2θ4+2sinθ]π3π A1=12[3π2+0+0π2383] A1=12[π+938] A1=π29316   {A_1} = \int\limits_{\dfrac{\pi }{3}}^\pi {\dfrac{1}{2}{{(1 + \cos \theta )}^2}d\theta } = \dfrac{1}{2}\int\limits_{\dfrac{\pi }{3}}^\pi {(1 + {{\cos }^2}\theta + 2\cos \theta )d\theta } = \dfrac{1}{2}\int\limits_{\dfrac{\pi }{3}}^\pi {(1 + \dfrac{{\cos 2\theta + 1}}{2} + 2\cos \theta )d\theta } \\\ \Rightarrow {A_1} = \dfrac{1}{2}[\theta + \dfrac{1}{2}(\dfrac{{\sin 2\theta }}{2} + \theta ) + 2\sin \theta ]_{\dfrac{\pi }{3}}^\pi \\\ \Rightarrow {A_1} = \dfrac{1}{2}[\dfrac{{3\theta }}{2} + \dfrac{{\sin 2\theta }}{4} + 2\sin \theta ]_{\dfrac{\pi }{3}}^\pi \\\ \Rightarrow {A_1} = \dfrac{1}{2}[\dfrac{{3\pi }}{2} + 0 + 0 - \dfrac{\pi }{2} - \dfrac{{\sqrt 3 }}{8} - \sqrt 3 ] \\\ \Rightarrow {A_1} = \dfrac{1}{2}[\pi + \dfrac{{ - 9\sqrt 3 }}{8}] \\\ \Rightarrow {A_1} = \dfrac{\pi }{2} - \dfrac{{9\sqrt 3 }}{{16}} \;

Area of the circle –
A2=π3π212(3cosθ)2dθ A2=92π3π2cos2θ+12dθ A2=94[sin2θ2+θ]π3π2 A2=94[0+π234π3] A2=94[π634] A2=3π89316   {A_2} = \int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{1}{2}{{(3\cos \theta )}^2}d\theta } \\\ \Rightarrow {A_2} = \dfrac{9}{2}\int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{{\cos 2\theta + 1}}{2}d\theta } \\\ \Rightarrow {A_2} = \dfrac{9}{4}[\dfrac{{\sin 2\theta }}{2} + \theta ]_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} \\\ \Rightarrow {A_2} = \dfrac{9}{4}[0 + \dfrac{\pi }{2} - \dfrac{{\sqrt 3 }}{4} - \dfrac{\pi }{3}] \\\ \Rightarrow {A_2} = \dfrac{9}{4}[\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{4}] \\\ \Rightarrow {A_2} = \dfrac{{3\pi }}{8} - \dfrac{{9\sqrt 3 }}{{16}} \;
Area of the shaded region,
A=A1A2 A=π29316(3π89316) A=π293163π8+9316 A=π8   A = {A_1} - {A_2} \\\ \Rightarrow A = \dfrac{\pi }{2} - \dfrac{{9\sqrt 3 }}{{16}} - (\dfrac{{3\pi }}{8} - \dfrac{{9\sqrt 3 }}{{16}}) \\\ \Rightarrow A = \dfrac{\pi }{2} - \dfrac{{9\sqrt 3 }}{{16}} - \dfrac{{3\pi }}{8} + \dfrac{{9\sqrt 3 }}{{16}} \\\ \Rightarrow A = \dfrac{\pi }{8} \;
This is the area of the shaded region in the first and the second quadrant. We see that by symmetry, the area of the shaded region in the first and the second quadrant is equal to the area of the shaded region in the third and the fourth quadrant.
So, the total area is 2×π8=π42 \times \dfrac{\pi }{8} = \dfrac{\pi }{4}
Hence the region inside cardioid r=1+cosθr = 1 + \cos \theta and outside the circle r=3cosθr = 3\cos \theta is equal to π4\dfrac{\pi }{4} .
So, the correct answer is “ π4\dfrac{\pi }{4} ”.

Note : We integrate the area of the cardioid and the circle from π3\dfrac{\pi }{3} to π\pi and π3\dfrac{\pi }{3} to π2\dfrac{\pi }{2} respectively because we need to find the area under that region only. But one may get confused that we have taken the upper limit of cardioid as π\pi and that of the circle as π2\dfrac{\pi }{2} . We see that their point of intersection is zero and ±π3\pm \dfrac{\pi }{3} , and 1+cosθ1 + \cos \theta is zero at θ=π\theta = \pi while 3cosθ3\cos \theta is zero at θ=π2\theta = \dfrac{\pi }{2} .