Solveeit Logo

Question

Question: How do you find the quadratic function \(y = a{x^2} + bx + c\) whose graph passes through the given ...

How do you find the quadratic function y=ax2+bx+cy = a{x^2} + bx + c whose graph passes through the given points (1,1)(1,{\kern 1pt} {\kern 1pt} {\kern 1pt} - 1), (1,5)( - 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} 5), (2,10)(2,{\kern 1pt} {\kern 1pt} {\kern 1pt} 10)?

Explanation

Solution

We have to find the quadratic function using the three given points. A quadratic function is a function of degree 2. As the graph of the function passes through these points we can say that these points should also satisfy the given equation. We have to find the values of aa, bb and cc to find the required function.

Complete step by step solution:
We are given that the graph of the quadratic function y=ax2+bx+cy = a{x^2} + bx + c passes through the points (1,1)(1,{\kern 1pt} {\kern 1pt} {\kern 1pt} - 1), (1,5)( - 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} 5) and (2,10)(2,{\kern 1pt} {\kern 1pt} {\kern 1pt} 10).
Therefore, these points should satisfy the equation of the function. Using these three points we will find three conditions relating aa, bb and cc.
So, using point (1,1)(1,{\kern 1pt} {\kern 1pt} {\kern 1pt} - 1), we can write,
y=ax2+bx+c 1=a×12+b×1+c 1=a+b+c  y = a{x^2} + bx + c \\\ \Rightarrow - 1 = a \times {1^2} + b \times 1 + c \\\ \Rightarrow - 1 = a + b + c \\\
Let us say this equation as condition (1)
Similarly, using second point (1,5)( - 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} 5), we can write,
y=ax2+bx+c 5=a×(1)2+b×(1)+c 5=ab+c  y = a{x^2} + bx + c \\\ \Rightarrow 5 = a \times {( - 1)^2} + b \times ( - 1) + c \\\ \Rightarrow 5 = a - b + c \\\
Let us say this equation as condition (2)
And, using third point (2,10)(2,{\kern 1pt} {\kern 1pt} {\kern 1pt} 10), we can write,
y=ax2+bx+c 10=a×22+b×2+c 10=4a+2b+c  y = a{x^2} + bx + c \\\ \Rightarrow 10 = a \times {2^2} + b \times 2 + c \\\ \Rightarrow 10 = 4a + 2b + c \\\
Let us say this equation as condition (3)
We get three equations or conditions in terms of aa, bb and cc using which we can find the value of aa, bb and cc.
From first condition we can write,

1=a+b+c a=1bc  \Rightarrow - 1 = a + b + c \\\ \Rightarrow a = - 1 - b - c \\\

Putting this in condition (2) we get,
5=ab+c 5=(1bc)b+c 5=12b 2b=15=6 b=3  5 = a - b + c \\\ \Rightarrow 5 = ( - 1 - b - c) - b + c \\\ \Rightarrow 5 = - 1 - 2b \\\ \Rightarrow 2b = - 1 - 5 = - 6 \\\ \Rightarrow b = - 3 \\\
Putting a=1bca = - 1 - b - c and b=3b = - 3 in condition (3), we get,
10=4a+2b+c 10=4×(1bc)+2b+c 10=44b4c+2b+c 10=42b3c 10=42×(3)3c 10=4+63c 3c=104+6=8 c=83  10 = 4a + 2b + c \\\ \Rightarrow 10 = 4 \times ( - 1 - b - c) + 2b + c \\\ \Rightarrow 10 = - 4 - 4b - 4c + 2b + c \\\ \Rightarrow 10 = - 4 - 2b - 3c \\\ \Rightarrow 10 = - 4 - 2 \times ( - 3) - 3c \\\ \Rightarrow 10 = - 4 + 6 - 3c \\\ \Rightarrow 3c = - 10 - 4 + 6 = - 8 \\\ \Rightarrow c = \dfrac{{ - 8}}{3} \\\
Now we can find the value of aa as,

a=1bc a=1(3)83 a=1+3+83=3+9+83 a=143  a = - 1 - b - c \\\ \Rightarrow a = - 1 - ( - 3) - \dfrac{{ - 8}}{3} \\\ \Rightarrow a = - 1 + 3 + \dfrac{8}{3} = \dfrac{{ - 3 + 9 + 8}}{3} \\\ \Rightarrow a = \dfrac{{14}}{3} \\\

Thus, we get the values a=143a = \dfrac{{14}}{3}, b=3b = - 3 and c=83c = - \dfrac{8}{3}.
Using these values we can write the required quadratic function as,
y=143x23x83y = \dfrac{{14}}{3}{x^2} - 3x - \dfrac{8}{3}

Hence, the quadratic function passing through the three given points is y=143x23x83y = \dfrac{{14}}{3}{x^2} - 3x - \dfrac{8}{3}

Note: We used the three given points to find the three conditions relating aa, bb and cc. The graph of a quadratic function is parabolic. We can check the result by plotting the graph and locating the points or also by simply putting the values of points in the equation of the function.