Solveeit Logo

Question

Question: How do you find the power series representation of \(\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)...

How do you find the power series representation of (1+x)(1x)2\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}} ?

Explanation

Solution

To solve the above question we will first write the expansion of the term (1x)1{{\left( 1-x \right)}^{-1}}as (1x)1=1+x+x2+.......{{\left( 1-x \right)}^{-1}}=1+x+{{x}^{2}}+....... and since we can write (1x)1{{\left( 1-x \right)}^{-1}} as 1(1x)\dfrac{1}{\left( 1-x \right)} so, we will differentiate the obtained expansion to obtain the square in the denominator and then we will multiply with x on both the side and then we will get the expansion of the terms 1(1x)2andx(1x)2\dfrac{1}{{{\left( 1-x \right)}^{2}}}and\dfrac{x}{{{\left( 1-x \right)}^{2}}} both and hence, to obtain the expansion of (1+x)(1x)2\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}} we will add the expansion of 1(1x)2andx(1x)2\dfrac{1}{{{\left( 1-x \right)}^{2}}}and\dfrac{x}{{{\left( 1-x \right)}^{2}}} both.

Complete step by step answer:
We can see from question that we have to write the power series representation of (1+x)(1x)2\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}, which means we have to write the expansion of (1+x)(1x)2\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}.
Since, we know that the expansion of (1x)1{{\left( 1-x \right)}^{-1}} is given as (1x)1=1+x+x2+.......up to infinite terms.{{\left( 1-x \right)}^{-1}}=1+x+{{x}^{2}}+.......\text{up to infinite terms}\text{.}
And, we can write (1x)1{{\left( 1-x \right)}^{-1}} as 1(1x)\dfrac{1}{\left( 1-x \right)}.
So, we will get:
1(1x)=1+x+x2+.......up to infinite terms.\Rightarrow \dfrac{1}{\left( 1-x \right)}=1+x+{{x}^{2}}+.......\text{up to infinite terms}\text{.}
Now, after differentiating both the side of the above expansion we will get:
d(1(1x))dx=d(1+x+x2+.......)dx\Rightarrow \dfrac{d\left( \dfrac{1}{\left( 1-x \right)} \right)}{dx}=\dfrac{d\left( 1+x+{{x}^{2}}+....... \right)}{dx}
Now, we know that d(xn)dx=nxn1\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}, and d(A+B)dx=dAdx+dBdx\dfrac{d\left( A+B \right)}{dx}=\dfrac{dA}{dx}+\dfrac{dB}{dx}
1×(1x)11×(1)=d(1)dx+dxdx+dx2dx+dx3dx+......\Rightarrow -1\times {{\left( 1-x \right)}^{-1-1}}\times \left( -1 \right)=\dfrac{d\left( 1 \right)}{dx}+\dfrac{dx}{dx}+\dfrac{d{{x}^{2}}}{dx}+\dfrac{d{{x}^{3}}}{dx}+......
1(1x)2=1+2x+3x2+......\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}}=1+2x+3{{x}^{2}}+......
1(1x)2=1+2x+3x2+.......up to infinite terms. —-(1)\Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}}=1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{. ----}\left( 1 \right)
Now, after multiplying both side of the above equation (1) by x, we will get:
x(1x)2=x(1+2x+3x2+.......up to infinite terms.)\Rightarrow \dfrac{x}{{{\left( 1-x \right)}^{2}}}=x\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right)
x(1x)2=(x+2x2+3x3.......up to infinite terms.)(2)\Rightarrow \dfrac{x}{{{\left( 1-x \right)}^{2}}}=\left( x+2{{x}^{2}}+3{{x}^{3}}-.......\text{up to infinite terms}\text{.} \right)---\left( 2 \right)
Now, after adding equation (1) and (2) we will get:
1(1x)2+x(1x)2=(1+2x+3x2+.......up to infinite terms.) +(x+2x2+3x3+.......up to infinite terms.) \begin{aligned} & \Rightarrow \dfrac{1}{{{\left( 1-x \right)}^{2}}}+\dfrac{x}{{{\left( 1-x \right)}^{2}}}=\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right) \\\ & +\left( x+2{{x}^{2}}+3{{x}^{3}}+.......\text{up to infinite terms}\text{.} \right) \\\ \end{aligned}
Now, after simplifying the LHS , we will get:
1+x(1x)2=(1+2x+3x2+.......up to infinite terms.)+(x+2x2+3x3+.......up to infinite terms.)\Rightarrow \dfrac{1+x}{{{\left( 1-x \right)}^{2}}}=\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right)+\left( x+2{{x}^{2}}+3{{x}^{3}}+.......\text{up to infinite terms}\text{.} \right)
1+x(1x)2=(1+2x+3x2+.......up to infinite terms.)+(x+2x2+3x3+.......up to infinite terms.)\Rightarrow \dfrac{1+x}{{{\left( 1-x \right)}^{2}}}=\left( 1+2x+3{{x}^{2}}+.......\text{up to infinite terms}\text{.} \right)+\left( x+2{{x}^{2}}+3{{x}^{3}}+.......\text{up to infinite terms}\text{.} \right)
Now, after adding the corresponding similar term of the equation, we will get:
1+x(1x)2=(1+3x+5x2+7x3.......up to infinite terms)\Rightarrow \dfrac{1+x}{{{\left( 1-x \right)}^{2}}}=\left( 1+3x+5{{x}^{2}}+7{{x}^{3}}.......\text{up to infinite terms} \right)
Hence, the power series representation of (1+x)(1x)2\dfrac{\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}} is given as: (1+3x+5x2+7x3.......up to infinite terms)\left( 1+3x+5{{x}^{2}}+7{{x}^{3}}.......\text{up to infinite terms} \right)
This is the required solution.

Note: When we add two series which consists of the infinite terms then we add coefficient terms with the same power terms. Also, note that that expansion of (1+x)n{{\left( 1+x \right)}^{n}}, where n is negative or fraction is given as: (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+......{{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+.......