Solveeit Logo

Question

Question: How do you find the power series for \[f\left( x \right)=\int{\dfrac{\ln \left( 1+t \right)}{t}}dt~\...

How do you find the power series for f(x)=ln(1+t)tdt f\left( x \right)=\int{\dfrac{\ln \left( 1+t \right)}{t}}dt~ from [0,x]\left[ 0,x \right] and determine its radius of convergence?

Explanation

Solution

In order to find the solution to the given question, that is to find the power series for f(x)=ln(1+t)tdt f\left( x \right)=\int{\dfrac{\ln \left( 1+t \right)}{t}}dt~ from [0,x]\left[ 0,x \right] and determine its radius of convergence, we will use the Maclaurin Series of ln(1+x)\ln \left( 1+x \right) then replace xx with tt to determine the value of ln(1+t)t\dfrac{\ln \left( 1+t \right)}{t} and find the power series with the help of it. And to determine radius of convergence use the d'Alembert's ratio test.

Complete step by step solution:
According to the question, given function in the question is as follows:
f(x)=ln(1+t)tdt f\left( x \right)=\int{\dfrac{\ln \left( 1+t \right)}{t}}dt~
We are going to start with the well-known Maclaurin Series for ln(1+x)\ln \left( 1+x \right):
ln(1+x)=xx22+x33x44+...\ln \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...
Now replace the variable xx in the above series by tt then we get:
ln(1+t)=tt22+t33t44+...\Rightarrow \ln \left( 1+t \right)=t-\dfrac{{{t}^{2}}}{2}+\dfrac{{{t}^{3}}}{3}-\dfrac{{{t}^{4}}}{4}+...
So, now we have the value of ln(1+t)t\dfrac{\ln \left( 1+t \right)}{t} as:
\Rightarrow \dfrac{\ln \left( 1+t \right)}{t}=\dfrac{1}{t}\left\\{ t-\dfrac{{{t}^{2}}}{2}+\dfrac{{{t}^{3}}}{3}-\dfrac{{{t}^{4}}}{4}+... \right\\}
ln(1+t)t=1t2+t23t34+...\Rightarrow \dfrac{\ln \left( 1+t \right)}{t}=1-\dfrac{t}{2}+\dfrac{{{t}^{2}}}{3}-\dfrac{{{t}^{3}}}{4}+...
So, we can substitute the above value in the given function and get:
f(x)=0xln(1+t)tdt\Rightarrow f\left( x \right)=\int\limits_{0}^{x}{\dfrac{\ln \left( 1+t \right)}{t}}dt
\Rightarrow f\left( x \right)=\int\limits_{0}^{x}{\left\\{ 1-\dfrac{t}{2}+\dfrac{{{t}^{2}}}{3}-\dfrac{{{t}^{3}}}{4}+... \right\\}}dt
f(x)=[tt222+t333t444+...]0x\Rightarrow f\left( x \right)=\left[ t-\dfrac{\dfrac{{{t}^{2}}}{2}}{2}+\dfrac{\dfrac{{{t}^{3}}}{3}}{3}-\dfrac{\dfrac{{{t}^{4}}}{4}}{4}+... \right]_{0}^{x}
f(x)=[tt24+t39t416+...]0x\Rightarrow f\left( x \right)=\left[ t-\dfrac{{{t}^{2}}}{4}+\dfrac{{{t}^{3}}}{9}-\dfrac{{{t}^{4}}}{16}+... \right]_{0}^{x}
f(x)=xx24+x39x416+...\Rightarrow f\left( x \right)=x-\dfrac{{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{9}-\dfrac{{{x}^{4}}}{16}+...
Therefore, we can write the above equation in the following power series
f(x)=r=1(1)r+1xrr2\Rightarrow f\left( x \right)=\sum\limits_{r=1}^{\infty }{{{\left( -1 \right)}^{r+1}}\dfrac{{{x}^{r}}}{{{r}^{2}}}}
In order to find the radius of convergence of the derived power series we will apply
d'Alembert's ratio test which states that
Suppose that;
S=r=1anS=\sum\limits_{r=1}^{\infty }{{{a}_{n}}} and L=limnan+1anL=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|
Then
if L<1L<1 then the series converges absolutely;
if L>1L>1 then the series is divergent;
if L=1L=1or the limit fails to exist the test is inconclusive.

Now the given series is as follows;
S=r=1(1)r+1xrr2\Rightarrow S=\sum\limits_{r=1}^{\infty }{{{\left( -1 \right)}^{r+1}}\dfrac{{{x}^{r}}}{{{r}^{2}}}}
Applying the d'Alembert's ratio test in the above series we get:
L=limn(1)n+1+1xn+1(n+1)2(1)n+1xnn2\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{\left( -1 \right)}^{n+1+1}}{{x}^{n+1}}}{{{\left( n+1 \right)}^{2}}}}{\dfrac{{{\left( -1 \right)}^{n+1}}{{x}^{n}}}{{{n}^{2}}}} \right|
After simplifying it further we get:
L=limn(1)xn2(n+1)2\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\left( -1 \right)x{{n}^{2}}}{{{\left( n+1 \right)}^{2}}} \right|
Now open the brackets and solve them, we get:
L=limnx×n2n2+2n+11n21n2\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| -x \right|\times \left| \dfrac{{{n}^{2}}}{{{n}^{2}}+2n+1}\cdot \dfrac{\dfrac{1}{{{n}^{2}}}}{\dfrac{1}{{{n}^{2}}}} \right|
L=limnx×11+2n+1n2\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| -x \right|\times \left| \dfrac{1}{1+\dfrac{2}{n}+\dfrac{1}{{{n}^{2}}}} \right|
After applying the limit, we get:
L=x\Rightarrow L=\left| x \right|
And we can conclude that the series converges if L<1L<1
x<1\Rightarrow \left| x \right|<1.
Therefore, f(x)=xx24+x39x416+...f\left( x \right)=x-\dfrac{{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{9}-\dfrac{{{x}^{4}}}{16}+... or we can say f(x)=r=1(1)r+1xrr2f\left( x \right)=\sum\limits_{r=1}^{\infty }{{{\left( -1 \right)}^{r+1}}\dfrac{{{x}^{r}}}{{{r}^{2}}}} and its radius of convergence is x<1\left| x \right|<1 or equivalently x(1,1)x\in \left( -1,1 \right) or 1<x<1-1< x< 1.

Note: Students make mistakes while getting confused with the signs before the terms in the Maclaurin series of ln(1+x)\ln \left( 1+x \right). They might write it as ln(1+x)=x+x22x33+x44+...\ln \left( 1+x \right)=x+\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... instead of ln(1+x)=xx22+x33x44+...\ln \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... which leads to the completely wrong answer.