Solveeit Logo

Question

Question: How do you find the minimum and maximum value of \[y = - {\left( {x - 3} \right)^2} - 4\]?...

How do you find the minimum and maximum value of y=(x3)24y = - {\left( {x - 3} \right)^2} - 4?

Explanation

Solution

Here, we need to find the minimum and maximum value of the given function. First, we will find the first derivative of the function. Then, we will find the points at which the first derivative is equal to 0. Finally, we will use the second derivative test to check which point is the point of maximum and minimum value and substitute the coordinate in the function to find the maximum and minimum value.

Formula Used:
We will use the following formulas:
1. d(u+v)dx=d(u)dx+d(v)dx\dfrac{{d\left( {u + v} \right)}}{{dx}} = \dfrac{{d\left( u \right)}}{{dx}} + \dfrac{{d\left( v \right)}}{{dx}}
2. The derivative of a function of the form a[f(x)]na{\left[ {f\left( x \right)} \right]^n} is given by na[f(x)]n1×d[f(x)]dxna{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}.
3. d(ax)dx=a\dfrac{{d\left( {ax} \right)}}{{dx}} = a

Complete step-by-step solution:
First, we will find the first derivative of the given function.
Differentiating both sides of the given equation, we get
dydx=d[(x3)24]dx\dfrac{{dy}}{{dx}} = \dfrac{{d\left[ { - {{\left( {x - 3} \right)}^2} - 4} \right]}}{{dx}}
The derivative of the sum of two functions can be written as the sum of the derivatives of the individual functions. This can be written as d(u+v)dx=d(u)dx+d(v)dx\dfrac{{d\left( {u + v} \right)}}{{dx}} = \dfrac{{d\left( u \right)}}{{dx}} + \dfrac{{d\left( v \right)}}{{dx}}.
Using the sum of derivatives, we get
dydx=d[(x3)2]dx+d[4]dx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left[ { - {{\left( {x - 3} \right)}^2}} \right]}}{{dx}} + \dfrac{{d\left[ { - 4} \right]}}{{dx}}
The derivative of a constant is always 0.
Therefore, we get
d[4]dx=0\dfrac{{d\left[ { - 4} \right]}}{{dx}} = 0
Substituting d[4]dx=0\dfrac{{d\left[ { - 4} \right]}}{{dx}} = 0 in the equation, we get
dydx=d[(x3)2]dx+0 dydx=d[(x3)2]dx\begin{array}{l} \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left[ { - {{\left( {x - 3} \right)}^2}} \right]}}{{dx}} + 0\\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left[ { - {{\left( {x - 3} \right)}^2}} \right]}}{{dx}}\end{array}
The derivative of a function of the form a[f(x)]na{\left[ {f\left( x \right)} \right]^n} is given by na[f(x)]n1×d[f(x)]dxna{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}.
Therefore, we get the derivative of the function (x3)2 - {\left( {x - 3} \right)^2} as
d[(x3)2]dx=2(x3)21×d(x3)dx\dfrac{{d\left[ { - {{\left( {x - 3} \right)}^2}} \right]}}{{dx}} = - 2{\left( {x - 3} \right)^{2 - 1}} \times \dfrac{{d\left( {x - 3} \right)}}{{dx}}
Substituting d[(x3)2]dx=2(x3)21×d(x3)dx\dfrac{{d\left[ { - {{\left( {x - 3} \right)}^2}} \right]}}{{dx}} = - 2{\left( {x - 3} \right)^{2 - 1}} \times \dfrac{{d\left( {x - 3} \right)}}{{dx}} in the equation, we get
dydx=2(x3)21×d(x3)dx\Rightarrow \dfrac{{dy}}{{dx}} = - 2{\left( {x - 3} \right)^{2 - 1}} \times \dfrac{{d\left( {x - 3} \right)}}{{dx}}
Simplifying the expression, we get
dydx=2(x3)1×d(x3)dx dydx=2(x3)×d(x3)dx\begin{array}{l} \Rightarrow \dfrac{{dy}}{{dx}} = - 2{\left( {x - 3} \right)^1} \times \dfrac{{d\left( {x - 3} \right)}}{{dx}}\\\ \Rightarrow \dfrac{{dy}}{{dx}} = - 2\left( {x - 3} \right) \times \dfrac{{d\left( {x - 3} \right)}}{{dx}}\end{array}
Using the sum of derivatives, we get
dydx=2(x3)×[d(x)dx+d(3)dx]\Rightarrow \dfrac{{dy}}{{dx}} = - 2\left( {x - 3} \right) \times \left[ {\dfrac{{d\left( x \right)}}{{dx}} + \dfrac{{d\left( { - 3} \right)}}{{dx}}} \right]
The value of the derivative of a constant is always 0.
The value of a variable with respect to itself is always 1.
Therefore, the equation becomes
dydx=2(x3)×[1+0]\Rightarrow \dfrac{{dy}}{{dx}} = - 2\left( {x - 3} \right) \times \left[ {1 + 0} \right]
Adding the terms, we get
dydx=2(x3)×1\Rightarrow \dfrac{{dy}}{{dx}} = - 2\left( {x - 3} \right) \times 1
Multiplying the terms, we get
dydx=2(x3)\Rightarrow \dfrac{{dy}}{{dx}} = - 2\left( {x - 3} \right)
Multiplying the terms using the distributive law of multiplication, we get
dydx=2x+6\Rightarrow \dfrac{{dy}}{{dx}} = - 2x + 6
This is the value of the first derivative.
We will equate the first derivative to 0.
Equating the first derivative to 0, we get
2x+6=0\Rightarrow - 2x + 6 = 0
This is a linear equation in terms of xx. We will solve it to find the value of xx, and hence, the point of local maxima/minima.
Adding 2x2x on both sides of the equation, we get
6=2x\Rightarrow 6 = 2x
Dividing both sides of the equation by 2, we get
3=x\Rightarrow 3 = x
Now, we will find the second derivative of the function by differentiating the first derivative.
If the second derivative is greater than 0, then the point x=3x = 3 is the point of minimum value.
If the second derivative is lesser than 0, then the point x=3x = 3 is the point of maximum value.
Differentiating both sides of the equation dydx=2x+6\dfrac{{dy}}{{dx}} = - 2x + 6, we get
d2ydx2=d(2x+6)dx\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( { - 2x + 6} \right)}}{{dx}}
Using the sum of derivatives, we get
d2ydx2=d(2x)dx+d(6)dx\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( { - 2x} \right)}}{{dx}} + \dfrac{{d\left( 6 \right)}}{{dx}}
The derivative of the product of a constant and a variable, with respect to that variable, is equal to the constant, that is d(ax)dx=a\dfrac{{d\left( {ax} \right)}}{{dx}} = a.
Therefore, we get
d2ydx2=2+0 d2ydx2=2\begin{array}{l} \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - 2 + 0\\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - 2\end{array}
The second derivative is less than 0.
Therefore, the point x=3x = 3 is the point of maximum value.
Substituting x=3x = 3 in the given equation, we get
y=(33)24\Rightarrow y = - {\left( {3 - 3} \right)^2} - 4
Subtracting 3 from 3, we get
y=(0)24 y=04 y=4\begin{array}{l} \Rightarrow y = - {\left( 0 \right)^2} - 4\\\ \Rightarrow y = - 0 - 4\\\ \Rightarrow y = - 4\end{array}

Therefore, the maximum value of the given function is 4 - 4. The function has no minimum value.

Note:
We have used the distributive law of multiplication in the solution. The distributive law of multiplication states that ab+ac=a(b+c)a \cdot b + a \cdot c = a\left( {b + c} \right).
Verification: We can verify the maximum value by drawing the graph of the given equation.
Drawing the graph of y=(x3)24y = - {\left( {x - 3} \right)^2} - 4, we get

We can observe that the graph of the equation y=(x3)24y = - {\left( {x - 3} \right)^2} - 4 has maximum value as 4 - 4, and has no minimum value.