Solveeit Logo

Question

Question: How do you find the Maclaurin series of \(f\left( x \right) = \cosh \left( x \right)\)?...

How do you find the Maclaurin series of f(x)=cosh(x)f\left( x \right) = \cosh \left( x \right)?

Explanation

Solution

Given a trigonometric expression. We have to find the Maclaurin series for the expression. We will first apply the expansion of the Maclaurin series. Then, we will find the derivative of the function at x=0x = 0.
Formula used:
The expansion of the Taylor series is given by:
f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+f\left( a \right) + \dfrac{{f'\left( a \right)}}{{1!}}\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots
The sigma notation of the series is given by:
n=0fn(a)n!(xa)n\sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( a \right)}}{{n!}}{{\left( {x - a} \right)}^n}}
The series is known as Maclaurin series when a=0a = 0

Complete step by step solution:
We are given the function, f(x)=cosh(x)f\left( x \right) = \cosh \left( x \right)
First, we will use the Taylor series to expand the function.
f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+\Rightarrow f\left( a \right) + \dfrac{{f'\left( a \right)}}{{1!}}\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots
Now, we will write the Maclaurin series by substituting a=0a = 0
f(0)+f(0)1!(x0)+f(0)2!(x0)2+f(0)3!(x0)3+\Rightarrow f\left( 0 \right) + \dfrac{{f'\left( 0 \right)}}{{1!}}\left( {x - 0} \right) + \dfrac{{f''\left( 0 \right)}}{{2!}}{\left( {x - 0} \right)^2} + \dfrac{{f'''\left( 0 \right)}}{{3!}}{\left( {x - 0} \right)^3} + \ldots
Simplifying the expression, we get:
f(0)+f(0)1!(x)+f(0)2!x2+f(0)3!x3+\Rightarrow f\left( 0 \right) + \dfrac{{f'\left( 0 \right)}}{{1!}}\left( x \right) + \dfrac{{f''\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{f'''\left( 0 \right)}}{{3!}}{x^3} + \ldots
Now, we find the value of f(0)f\left( 0 \right) by substituting zero for xx in thef(x)f\left( x \right)
f(0)=cos0\Rightarrow f\left( 0 \right) = \cos 0^\circ
f(0)=1\Rightarrow f\left( 0 \right) = 1
Now, we will find the value of f(x)f'\left( x \right)by differentiating the function, f(x)f\left( x \right)
coshx=sinhx\Rightarrow \cosh x = - \sinh x
Now compute the value of f(0)f'\left( 0 \right) by substituting zero for xx in f(x)f'\left( x \right)
f(0)=sin0\Rightarrow f'\left( 0 \right) = - \sin 0
Now, substitute zero for sin0\sin 0
f(0)=0\Rightarrow f'\left( 0 \right) = 0
Now, we will find the second derivative of the function.
f(x)=(sinhx)\Rightarrow f''\left( x \right) = {\left( { - \sinh x} \right)^{\prime \prime }}
f(x)=coshx\Rightarrow f''\left( x \right) = - \cosh x
Now compute the value of f(0)f''\left( 0 \right) by substituting zero for xx in f(x)f''\left( x \right)
f(0)=cos0\Rightarrow f''\left( 0 \right) = - \cos 0
Now, substitute one for cos0\cos 0
f(0)=1\Rightarrow f''\left( 0 \right) = - 1
Now, we will find the third derivative of the function.
f(x)=(coshx)\Rightarrow f'''\left( x \right) = {\left( { - \cosh x} \right)^{\prime \prime \prime }}
f(x)=sinhx\Rightarrow f'''\left( x \right) = \sinh x
Now compute the value of f(0)f'''\left( 0 \right) by substituting zero for xx in f(x)f'''\left( x \right)
f(0)=sin0\Rightarrow f'''\left( 0 \right) = \sin 0
Now, substitute zero for sin0\sin 0
f(0)=0\Rightarrow f'''\left( 0 \right) = 0
Now, we will find the value of f4(x){f^4}\left( x \right).
f4(x)=(sinhx)\Rightarrow {f^4}\left( x \right) = {\left( {\sinh x} \right)^\prime }^{\prime \prime \prime }
f4(x)=coshx\Rightarrow {f^4}\left( x \right) = \cosh x
Now compute the value of f4(0){f^4}\left( 0 \right) by substituting zero for xx in f4(x){f^4}\left( x \right)
f4(0)=cos0\Rightarrow {f^4}\left( 0 \right) = \cos 0
f4(0)=1\Rightarrow {f^4}\left( 0 \right) = 1
Now, substitute the values in the Maclaurin series, we get:
1+01!(x)12!x2+03!x3+14!x4\Rightarrow 1 + \dfrac{0}{{1!}}\left( x \right) - \dfrac{1}{{2!}}{x^2} + \dfrac{0}{{3!}}{x^3} + \dfrac{1}{{4!}}{x^4} \ldots
1+0x22!+0+x44!+\Rightarrow 1 + 0 - \dfrac{{{x^2}}}{{2!}} + 0 + \dfrac{{{x^4}}}{{4!}} + \ldots
1x22!+x44!+\Rightarrow 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} + \ldots
Hence, the Maclaurin series for f(x)=cosh(x)f\left( x \right) = \cosh \left( x \right) is 1x22!+x44!+1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} + \ldots

Note: Please note that the Taylor series is given by:
f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+f\left( a \right) + \dfrac{{f'\left( a \right)}}{{1!}}\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots
The Maclaurin series is a special occurrence of Taylor series in which the series is obtained by substituting a=0a = 0. The Taylor series is an expansion of a function about a particular point and a one dimensional series which is an expansion of real function about the point is known as Maclaurin series.