Solveeit Logo

Question

Question: How do you find the maclaurin series of \[f\left( x \right)={{e}^{-2x}}?\]...

How do you find the maclaurin series of f(x)=e2x?f\left( x \right)={{e}^{-2x}}?

Explanation

Solution

The maclaurin series or taylor series of a real complex-valued function f(x)f\left( x \right) that is initially differentiable at a real or complex number aa is the power series.
f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+........f\left( a \right)+\dfrac{f'\left( a \right)}{1!}(x-a)+\dfrac{f''\left( a \right)}{2!}{{\left( x-a \right)}^{2}}+f'''\dfrac{\left( a \right)}{3!}{{\left( x-a \right)}^{3}}+........
Where n!n! denotes the factorial of nn in more compact sigma notation this can be written as n=00f(n)(a)n!(xa)n.\sum\limits_{n=0}^{0}{\dfrac{{{f}^{\left( n \right)}}\left( a \right)}{n!}{{\left( x-a \right)}^{n}}}.

Complete step by step solution:
The maclaurin series of f(x)=e2xqs.f\left( x \right)={{e}^{-2xq}}s.
f(x)=1+(2x)+(2x)22!+(2x)33!+.........f\left( x \right)=1+\left( -2x \right)+\dfrac{{{\left( -2x \right)}^{2}}}{2!}+\dfrac{{{\left( -2x \right)}^{3}}}{3!}+.........
First solution method: the maclaurin series of y=exps.y={{e}^{x}}ps.
y=1+z+z22!+z33!+z44!+...........y=1+z+\dfrac{{{z}^{2}}}{2!}+\dfrac{{{z}^{3}}}{3!}+\dfrac{{{z}^{4}}}{4!}+...........
Let z=2xz=-2x
Then f(x)=e2x=ezf\left( x \right)={{e}^{-2x}}={{e}^{z}} and f(x)f\left( x \right) has the same maclaurin series as the one. Above except use set z=2xz=-2x and get.
f(x)=1+(2x)+(2x)22!+(2x)33!+.........f\left( x \right)=1+\left( -2x \right)+\dfrac{{{\left( -2x \right)}^{2}}}{2!}+\dfrac{{{\left( -2x \right)}^{3}}}{3!}+.........
The maclaurin series of f(x)Ps.f\left( x \right)\text{Ps}.
f(x)=f(x=0)+f(x=0)x1!+f(x=0)x22!+f(x=0)x33!+..........f\left( x \right)=f\left( x=0 \right)+\dfrac{f'\left( x=0 \right)x}{1!}+\dfrac{f''\left( x=0 \right){{x}^{2}}}{2!}+\dfrac{f'''\left( x=0 \right){{x}^{3}}}{3!}+..........
The first term is f(x=0)f\left( x=0 \right) Here f(x=0)=e2(0)=1f\left( x=0 \right)={{e}^{-2(0)=1}}.
The second term is f(x=0)x1!=2e2(0)x1=2x\dfrac{f'\left( x=0 \right)x}{1!}=\dfrac{-2{{e}^{-2\left( 0 \right)}}x}{1}=-2x.
The third term is f(x=0)x22!=(2)2e2(0)x21=(2x)22!\dfrac{f'\left( x=0 \right){{x}^{2}}}{2!}=\dfrac{{{\left( -2 \right)}^{2}}{{e}^{-2\left( 0 \right)}}{{x}^{2}}}{1}=\dfrac{{{\left( -2x \right)}^{2}}}{2!}.
There are the same terms as in the maclaurin series written above.
By observing a pattern the nth{{n}^{th}} term of the the series is (2x)nn!\dfrac{{{\left( -2x \right)}^{n}}}{n!}.
Using a summation sign, the maclaurin series at f(x)f\left( x \right) can be written instead as f(x)=n=0n=[(2x)nn!]f\left( x \right)=\sum\limits_{n=0}^{n=\infty }{\left[ \dfrac{{{\left( -2x \right)}^{n}}}{n!} \right]}.

Note: Do not get confused between taylor series and maclaurin series both are the same.
Derivation at e2x{{e}^{-2x}} is (2)e2x(-2){{e}^{-2x}} do not write e2x{{e}^{-2x}} many at us make these mistakes.