Solveeit Logo

Question

Question: How do you find the Maclaurin Series for \(\sin \left( {{x^2}} \right)?\)...

How do you find the Maclaurin Series for sin(x2)?\sin \left( {{x^2}} \right)?

Explanation

Solution

First find the Maclaurin Series for sinx\sin x then put x2{x^2} in place of the argument that is xx. Maclaurin Series of a function f(x)f(x) is given as following:
f(x)=f(0)+f(0)1!(x)+f(0)2!(x2)+f(0)3!(x3)+...f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ...
Where f(0),  f(0)  and  f(0)f'(0),\;f''(0)\;{\text{and}}\;f'''(0) are derivatives of first, second and third order at x=0x = 0 of the given function f(x)f(x)

Complete step by step solution:
In order to find the Maclaurin Series for sin(x2)\sin ({x^2}) we need to first
to find the Maclaurin Series of sinx\sin x and then we will replace x  with  x2x\;{\text{with}}\;{x^2} then we will get the required Maclaurin series for sin(x2)\sin ({x^2})
Maclaurin series of a function f(x)f(x) is given by
f(x)=f(0)+f(0)1!(x)+f(0)2!(x2)+f(0)3!(x3)+...f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ...
So first finding the Maclaurin Series for f(x)=sinxf(x) = \sin x
Here f(x)=sinxf(x) = \sin x so finding respective values at x=0x = 0
f(0)=sin(0)=0 f(0)=cos(0)=1 f(0)=sin(0)=0 f(0)=cos(0)=1  f(0) = \sin (0) = 0 \\\ f'(0) = \cos (0) = 1 \\\ f''(0) = - \sin (0) = 0 \\\ f'''(0) = - \cos (0) = - 1 \\\
Putting these values above in order to find the Maclaurin Series expansion of f(x)=sinxf(x) = \sin x
f(x)=f(0)+f(0)1!(x)+f(0)2!(x2)+f(0)3!(x3)+... sinx=0+11!(x)+02!(x2)+(1)3!(x3)+... sinx=x1!x33!+x55!...  f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ... \\\ \sin x = 0 + \dfrac{1}{{1!}}(x) + \dfrac{0}{{2!}}({x^2}) + \dfrac{{( - 1)}}{{3!}}({x^3}) + ... \\\ \sin x = \dfrac{x}{{1!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ... \\\
This is the Maclaurin Series of a sine function
Hence for Maclaurin Series expansion for f(x)=sin(x2)f(x) = \sin ({x^2}) we will replace x  with  x2x\;{\text{with}}\;{x^2} we will get
sinx=x1!x33!+x55!... sin(x2)=x21!(x2)33!+(x2)55!...  \sin x = \dfrac{x}{{1!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ... \\\ \sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{{\left( {{x^2}} \right)}^3}}}{{3!}} + \dfrac{{{{\left( {{x^2}} \right)}^5}}}{{5!}} - ... \\\

Now we will use the law of indices for brackets to simplify it,
sin(x2)=x21!x2×33!+x2×55!... sin(x2)=x21!x63!+x105!...  \sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^{2 \times 3}}}}{{3!}} + \dfrac{{{x^{2 \times 5}}}}{{5!}} - ... \\\ \sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... \\\
So sin(x2)=x21!x63!+x105!...\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... is
the required Maclaurin Series for the given trigonometric function sin(x2)\sin ({x^2})
Now we should more simplify and generalize this expansion in order to understand the expansion more easily
It can be generalized with the use of sigma summation notation as follows:
sin(x2)=x21!x63!+x105!... sin(x2)=n=0x4n+2(2n+1)!×(1)n  \sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... \\\ \sin \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{4n + 2}}}}{{(2n + 1)!}} \times {{( - 1)}^n}} \\\

Note: Maclaurin Series is a special case of Taylor Series, we obtain it by substituting x0=0{x_0} = 0 in the Taylor series. Maclaurin Series is very useful in finding the approximate values for any argument of a given function, this is to be noted that it gives approximate values instead of the absolute value, if you want absolute value then go for regular methods.