Solveeit Logo

Question

Question: How do you find the Maclaurin series for \[{e^x}\sin x\]?...

How do you find the Maclaurin series for exsinx{e^x}\sin x?

Explanation

Solution

We need to find the Maclaurin series for exsinx{e^x}\sin x. We know that Maclaurin series is given by f(x)=f(0)+f(0)1!x+f(0)2!x2+f(0)3!x3+...+fn(0)n!xn+...f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}x + \dfrac{{{f{''}}(0)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{x^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{x^n} + ...
To calculate the Maclaurin series, we need to calculate the first, second, third up to nth{n^{th}} derivative of the given equation. After finding the derivative we need to calculate the value of the derivatives at zero. Putting all the values in the Maclaurin series of f(x)f(x), we will get the Maclaurin series for exsinx{e^x}\sin x.

Complete step by step answer:
We have to find the Maclaurin series of exsinx{e^x}\sin x.
Let f(x)=exsinx(1)f(x) = {e^x}\sin x - - - (1).
As we know that the Maclaurin series is given by f(x)=f(0)+f(0)1!x+f(0)2!x2+f(0)3!x3+...+fn(0)n!xn+...(2)f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}x + \dfrac{{{f{''}}(0)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{x^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{x^n} + ... - - - (2)
Putting x=0x = 0 in (1)(1), we get
f(0)=e0sin(0)\Rightarrow f(0) = {e^0}\sin \left( 0 \right)
On simplifying, we get
f(0)=0\Rightarrow f(0) = 0
As we know, from the product rule of differentiation,
ddx(uv)=udvdx+vdudx\Rightarrow \dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}
Differentiating (1)(1) with respect to xx using the product rule of differentiation, we get
f(x)=ddx(exsinx)\Rightarrow f'(x) = \dfrac{d}{{dx}}\left( {{e^x}\sin x} \right)
f(x)=(ex)(ddxsinx)+(ddxex)(sinx)\Rightarrow f'\left( x \right) = \left( {{e^x}} \right)\left( {\dfrac{d}{{dx}}\sin x} \right) + \left( {\dfrac{d}{{dx}}{e^x}} \right)\left( {\sin x} \right)
On simplification, we get
f(x)=excosx+exsinx\Rightarrow f'\left( x \right) = {e^x}\cos x + {e^x}\sin x
Putting x=0x = 0, we get
f(0)=e0cos(0)+e0sin(0)\Rightarrow f'\left( 0 \right) = {e^0}\cos \left( 0 \right) + {e^0}\sin \left( 0 \right)
Putting the value of e0=1{e^0} = 1, cos(0)=1\cos \left( 0 \right) = 1 and sin(0)=0\sin \left( 0 \right) = 0, we get
f(0)=1\Rightarrow f'\left( 0 \right) = 1
Now, differentiating f(x)f'\left( x \right) with respect to xx, we get
f(x)=ddx(excosx)+ddx(exsinx)\Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x}\cos x} \right) + \dfrac{d}{{dx}}\left( {{e^x}\sin x} \right)
f(x)=(ex)ddx(cosx)+(cosx)ddx(ex)+(ex)ddx(sinx)+(sinx)ddx(ex)\Rightarrow f''\left( x \right) = \left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {\cos x} \right) + \left( {\cos x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right) + \left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {\sin x} \right) + \left( {\sin x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)
On simplification, we get
f(x)=exsinx+excosx+excosx+exsinx\Rightarrow f''\left( x \right) = - {e^x}\sin x + {e^x}\cos x + {e^x}\cos x + {e^x}\sin x
On simplification, we get
f(x)=2excosx\Rightarrow f''\left( x \right) = 2{e^x}\cos x
Putting x=0x = 0, we get
f(0)=2e0cos(0)\Rightarrow f''\left( 0 \right) = 2{e^0}\cos \left( 0 \right)
f(0)=2\Rightarrow f''\left( 0 \right) = 2
Now, differentiating f(x)f''\left( x \right) with respect to xx, we get
f(x)=2ddx(excosx)\Rightarrow f'''\left( x \right) = 2\dfrac{d}{{dx}}\left( {{e^x}\cos x} \right)
f(x)=2((ex)ddx(cosx)+(ddxex)(cosx))\Rightarrow f'''(x) = 2\left( {\left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {\cos x} \right) + \left( {\dfrac{d}{{dx}}{e^x}} \right)\left( {\cos x} \right)} \right)
On simplification, we get
f(x)=2exsinx+2excosx\Rightarrow f'''(x) = - 2{e^x}\sin x + 2{e^x}\cos x
Putting x=0x = 0, we get
f(0)=2e0sin(0)+2e0cos(0)\Rightarrow f'''(0) = - 2{e^0}\sin \left( 0 \right) + 2{e^0}\cos \left( 0 \right)
f(0)=2\Rightarrow f'''(0) = 2
From (1)(1) and (2)(2), we get
exsinx=0+11!x+22!x2+23!x3+...{e^x}\sin x = 0 + \dfrac{1}{{1!}}x + \dfrac{2}{{2!}}{x^2} + \dfrac{2}{{3!}}{x^3} + ...
On simplification, we get
exsinx=x+x2+13x3+...{e^x}\sin x = x + {x^2} + \dfrac{1}{3}{x^3} + ...
Therefore, the Maclaurin series for exsinx{e^x}\sin x is x+x2+13x3+...x + {x^2} + \dfrac{1}{3}{x^3} + ....

Note:
To find the Taylor series and Maclaurin series, the function must be infinitely times differentiable and continuous. Also, note that the Maclaurin series is just the Taylor series about the point 00.
The Taylor series of any function f(x)f\left( x \right) about the point x=ax = a is given by the following expression: f(x)=f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+...+fn(a)n!(xa)n+...f(x) = f(a) + \dfrac{{{f{'}}(a)}}{{1!}}\left( {x - a} \right) + \dfrac{{{f{''}}(a)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{{f^{'''}}(a)}}{{3!}}{\left( {x - a} \right)^3} + ... + \dfrac{{{f^n}(a)}}{{n!}}{\left( {x - a} \right)^n} + ...
If we put a=0a = 0, then we will obtain the Maclaurin series.
f(x)=f(0)+f(0)1!(x0)+f(0)2!(x0)2+f(0)3!(x0)3+...+fn(0)n!(x0)n+...\Rightarrow f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}\left( {x - 0} \right) + \dfrac{{{f{''}}(0)}}{{2!}}{\left( {x - 0} \right)^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{\left( {x - 0} \right)^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{\left( {x - 0} \right)^n} + ...
On simplifying, we get
f(x)=f(0)+f(0)1!x+f(0)2!x2+f(0)3!x3+...+fn(0)n!xn+...\Rightarrow f(x) = f(0) + \dfrac{{{f{'}}(0)}}{{1!}}x + \dfrac{{{f{''}}(0)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}(0)}}{{3!}}{x^3} + ... + \dfrac{{{f^n}(0)}}{{n!}}{x^n} + ... which is the Maclaurin series.