Solveeit Logo

Question

Question: How do you find the maclaurin series expansion of \[\int{\left( \dfrac{1+x}{1-x} \right)?}\]...

How do you find the maclaurin series expansion of (1+x1x)?\int{\left( \dfrac{1+x}{1-x} \right)?}

Explanation

Solution

To find maclaurin series for (1+x1x)\int{\left( \dfrac{1+x}{1-x} \right)} from scratch, we first need to take note expressing a function as an infinite sum centred at x=0.x=0.

Complete step by step solution:
As we know that, you have to find the maclaurin series expansion of (1+x1x).\int{\left( \dfrac{1+x}{1-x} \right).}
Maclaurin series is (1+x1x),\int{\left( \dfrac{1+x}{1-x} \right),} we have to express a given function as an infinite sum centred at x=0.x=0.
In order to do this, we write
f(x)=f(0)+f1(0)1!x+f2(0)2!x2+f3(0)3!x3+......=n=0fn(0)xnn!f\left( x \right)=f\left( 0 \right)+\dfrac{{{f}^{1}}\left( 0 \right)}{1!}x+\dfrac{{{f}^{2}}\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{{f}^{3}}\left( 0 \right)}{3!}{{x}^{3}}+......=\sum\limits_{n=0}^{\infty }{{{f}^{n}}\left( 0 \right)\dfrac{{{x}^{n}}}{n!}}
This infinite sum suggests that we would have to calculate some derivatives, which I will do for three terms.
By the properties of logarithm, we have
f(x)=(1+x1x)=(1+x)(1x)\Rightarrow f\left( x \right)=\int{\left( \dfrac{1+x}{1-x} \right)=\int{\left( 1+x \right)-\int{\left( 1-x \right)}}}
Derivative calculations:
f1(x)=11+x11x\Rightarrow {{f}^{1}}\left( x \right)=\dfrac{1}{1+x}-\dfrac{-1}{1-x}
f1(x)=11+x+11x\Rightarrow {{f}^{1}}\left( x \right)=\dfrac{1}{1+x}+\dfrac{1}{1-x}
f1(x)=1x+1+x1x2\Rightarrow {{f}^{1}}\left( x \right)=\dfrac{1-x+1+x}{1-{{x}^{2}}}
f1(x)=21x2\Rightarrow {{f}^{1}}\left( x \right)=\dfrac{2}{1-{{x}^{2}}}
You can also write it as,
f1(x)=2(1x2)1\Rightarrow {{f}^{1}}\left( x \right)=2{{\left( 1-{{x}^{2}} \right)}^{-1}}
f2(x)=2(1x2)2(2x)\Rightarrow {{f}^{2}}\left( x \right)=-2{{\left( 1-{{x}^{2}} \right)}^{-2}}\left( -2x \right)
f2(x)=4x(1x2)2\Rightarrow {{f}^{2}}\left( x \right)=4x{{\left( 1-{{x}^{2}} \right)}^{-2}}
f2(x)=4x(1x2)2\Rightarrow {{f}^{2}}\left( x \right)=\dfrac{4x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}
f3(x)=4[1(1x2)+x....2(1x2)3(2x)]\Rightarrow {{f}^{3}}\left( x \right)=4\left[ 1\left( 1-{{x}^{2}} \right)+x....-2{{\left( 1-{{x}^{2}} \right)}^{-3}}\left( -2x \right) \right]
f3(x)=4(1x2)2+16x2(1x2)3\Rightarrow {{f}^{3}}\left( x \right)=\dfrac{4}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{16{{x}^{2}}}{{{\left( 1-{{x}^{2}} \right)}^{3}}}
Substituting 0'0' into our derivative we get,
f(0)=0\Rightarrow f\left( 0 \right)=0
f1(0)=2\Rightarrow {{f}^{1}}\left( 0 \right)=2
f2(0)=0\Rightarrow {{f}^{2}}\left( 0 \right)=0
f3(0)=4\Rightarrow {{f}^{3}}\left( 0 \right)=4
f4(0)=0\Rightarrow {{f}^{4}}\left( 0 \right)=0
f5(0)=48\Rightarrow {{f}^{5}}\left( 0 \right)=48
Actually it twins out that only odd derivatives at x=0x=0 given an actual value, and 0 to make up for a missing term, you have used a computing device to calculate the fourth and fifth derivative as shown above.
Using our fn(0){{f}^{n}}(0)- values to construct a maclaurin series, we write.
(1+x1x)=0+21!x+02!x2+43!x3+04!x4+485!x5\Rightarrow \int{\left( \dfrac{1+x}{1-x} \right)=0+\dfrac{2}{1!}x+\dfrac{0}{2!}{{x}^{2}}+\dfrac{4}{3!}{{x}^{3}}+\dfrac{0}{4!}{{x}^{4}}+\dfrac{48}{5!}{{x}^{5}}}
As we can see, a few terms just cancel out, leaving us with
(1+x1x)=21!x+43!x3+485!x5+..........\Rightarrow \int{\left( \dfrac{1+x}{1-x} \right)=\dfrac{2}{1!}x+\dfrac{4}{3!}{{x}^{3}}+\dfrac{48}{5!}{{x}^{5}}+..........}
Simplifying the denominator on each term the factorials, that is, we end up with
(1+x1x)=2x+46x3+48120x5+.........\Rightarrow \int{\left( \dfrac{1+x}{1-x} \right)=2x+\dfrac{4}{6}{{x}^{3}}+\dfrac{48}{120}{{x}^{5}}+.........}
We can actually simplify a few fraction and factor out a 22 out of each term, leaving us with
(1+x1x)=2(x+13x3+15x5+..........)\Rightarrow \int{\left( \dfrac{1+x}{1-x} \right)=2\left( x+\dfrac{1}{3}{{x}^{3}}+\dfrac{1}{5}{{x}^{5}}+.......... \right)}
As we may notice, we can see that the power and the denominator on each term is increasing by 2,2, so we end we with
(1+x1x)=2(x+13x3+15x5+..........)\Rightarrow \int{\left( \dfrac{1+x}{1-x} \right)=2\left( x+\dfrac{1}{3}{{x}^{3}}+\dfrac{1}{5}{{x}^{5}}+.......... \right)}
(1+x1x)=2n=0x2n+12n+1\Rightarrow \int{\left( \dfrac{1+x}{1-x} \right)=2\sum\limits_{n=0}^{\infty }{\dfrac{{{x}^{2n+1}}}{2n+1}}}

Note: Remember that a maclaurin series is a function that has an expansion series that gives the sum of derivatives of that function. The maclaurin series of a function f(x)f\left( x \right) up to order n'n' may be found using series \left[ f,\left\\{ x,0,n \right\\} \right].