Solveeit Logo

Question

Question: How do you find the Maclaurin series expansion of \[f\left( x \right) = \cos \left( {5{x^2}} \right)...

How do you find the Maclaurin series expansion of f(x)=cos(5x2)f\left( x \right) = \cos \left( {5{x^2}} \right)?

Explanation

Solution

Maclaurin series expansion of a cosine function is cos(y)=k=0(1)k(y)2k(2k)!\cos \left( y \right) = \sum\limits_{k = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^k}{{\left( y \right)}^{2k}}}}{{\left( {2k} \right)!}}} , where the interval of convergence is the whole real number. This expansion has infinite terms but still converges depending on the argument yy.

Complete step by step solution:
Write the given function whose Maclaurin series has to be found.
f(x)=cos(5x2)\Rightarrow f\left( x \right) = \cos \left( {5{x^2}} \right)

The given function f(x)=cos(5x2)f\left( x \right) = \cos \left( {5{x^2}} \right) can be written as a composite function of two functions g(y)=cosyg\left( y \right) = \cos y and h(x)=5x2h\left( x \right) = 5{x^2} as shown below.

gh(x)=g(h(x)) =g(5x2) =cos(5x2) =f(x)\begin{array}{c}g \circ h\left( x \right) = g\left( {h\left( x \right)} \right)\\\ = g\left( {5{x^2}} \right)\\\ = \cos \left( {5{x^2}} \right)\\\ = f\left( x \right)\end{array}

Now use the fact that the Maclaurin series for g(y)=cosyg\left( y \right) = \cos y function can be written as shown below.
g(y)=k=0(1)k(y)2k(2k)!\Rightarrow g\left( y \right) = \sum\limits_{k = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^k}{{\left( y \right)}^{2k}}}}{{\left( {2k} \right)!}}}

Substitute yy as h(x)=5x2h\left( x \right) = 5{x^2} and obtain the Maclaurin for f(x)=gh(x)f\left( x \right) = g \circ h\left( x \right) as shown below.
f(x)=k=0(1)k(5x2)2k(2k)!\Rightarrow f\left( x \right) = \sum\limits_{k = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^k}{{\left( {5{x^2}} \right)}^{2k}}}}{{\left( {2k} \right)!}}}

Therefore, the Maclaurin series for f(x)=cos(5x2)f\left( x \right) = \cos \left( {5{x^2}} \right) can be written as shown below.
cos(5x2)=k=0(1)k(5x2)2k(2k)!\Rightarrow \cos \left( {5{x^2}} \right) = \sum\limits_{k = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^k}{{\left( {5{x^2}} \right)}^{2k}}}}{{\left( {2k} \right)!}}}

Simplify the series as shown below.
cos(5x2)=k=0(1)k(5)2k(x2)2k(2k)! =k=0(1)k52kx4k(2k)!\begin{array}{c}\cos \left( {5{x^2}} \right) = \sum\limits_{k = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^k}{{\left( 5 \right)}^{2k}}{{\left( {{x^2}} \right)}^{2k}}}}{{\left( {2k} \right)!}}} \\\ = \sum\limits_{k = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^k}{5^{2k}}{x^{4k}}}}{{\left( {2k} \right)!}}} \end{array}
Now, expand the series with few terms as shown below.
cos(5x2)=125x42+625x824\cos \left( {5{x^2}} \right) = 1 - \dfrac{{25{x^4}}}{2} + \dfrac{{625{x^8}}}{{24}} - \cdots

Thus, the Maclaurin series for f(x)=cos(5x2)f\left( x \right) = \cos \left( {5{x^2}} \right) is f(x)=k=0(1)k52kx4k(2k)!f\left( x \right) = \sum\limits_{k = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^k}{5^{2k}}{x^{4k}}}}{{\left( {2k} \right)!}}} in compact form and f(x)=125x42+625x824f\left( x \right) = 1 - \dfrac{{25{x^4}}}{2} + \dfrac{{625{x^8}}}{{24}} - \cdots in expanded form.

Note: Most of the Maclaurin series are the composition and combination of elementary or basic functions. So always memorise the Maclaurin series of elementary functions. Maclaurin series are differentiable and integrable.