Solveeit Logo

Question

Question: How do you find the limit of \({\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)\) as \({\text{x}...

How do you find the limit of x tan(9x){\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) as x{\text{x}} approaches infinity using L’Hospital’s rule?

Explanation

Solution

In this question, they asked us to find the limit of x tan(9x){\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) as x{\text{x}} approaching infinity using L’Hospital’s rule.
First we have to rewrite or change the expression in such a way that it becomes easier to use the rule of L’Hospital.
Then we have to differentiate the numerator and the denominator with respect to x{\text{x}} and simplify it, and then we will get the right answer.

Formula used: dtanxdx=sec2x\dfrac{{d\tan {\text{x}}}}{{dx}} = {\sec ^2}{\text{x}}
Properties of trigonometric functions used:
tanx = sinxcosx\tan {\text{x = }}\dfrac{{\sin {\text{x}}}}{{\cos {\text{x}}}}
cos(0)\cos \left( 0 \right)= 11
Properties of limits used:
limxsinxx=1\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sin {\text{x}}}}{{\text{x}}} = 1

Complete step-by-step solution:
We need to find the limit of x tan(9x){\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) as x{\text{x}} approaching infinity using L’Hospital’s rule.
Using L’Hospital’s rule we need to findlimxx tan(9x)\mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)
Herelimxx tan(9x)\mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) has an indeterminate form \infty .
First, we have to change or rewrite the expression in such a way that it becomes easier to use the rule of L’Hospital
Here we are changing x{\text{x}} into 1 1x\dfrac{{1{\text{ }}}}{{\dfrac{1}{{\text{x}}}}} for this purpose,
And we get,
x tan(9x)=x tan(9x)1x\Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = \dfrac{{{\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)}}{{\dfrac{1}{{\text{x}}}}}
Now we can apply the rule,
First, differentiating the expression with respect to x{\text{x}} , we get
limxx tan(9x)=limx sec2(9x)(9x2)1x2\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = \mathop {\lim }\limits_{x \to \infty } {\text{ }}\dfrac{{{{\sec }^2}\left( {\dfrac{9}{{\text{x}}}} \right)\left( { - \dfrac{9}{{{{\text{x}}^2}}}} \right)}}{{ - \dfrac{1}{{{{\text{x}}^2}}}}}
limx sec2(9x)(9)\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{ }}{\sec ^2}\left( {\dfrac{9}{{\text{x}}}} \right)\left( 9 \right)
sec2(9)(9)\Rightarrow {\sec ^2}\left( {\dfrac{9}{\infty }} \right)\left( 9 \right)
We know that sec2(0)=1{\sec ^2}\left( 0 \right) = 1, thus we get
sec2(0)(9)\Rightarrow {\sec ^2}\left( 0 \right)\left( 9 \right)
9\Rightarrow 9

Therefore 99 is the required answer.

Note: In this question we have alternative method as follows
Alternative method:
We can find this without using the rule of L’Hospital’s
We have, x tan(9x){\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)
We have to change the expression using the properties of trigonometric functions,
i.e. tanx = sinxcosx\tan {\text{x = }}\dfrac{{\sin {\text{x}}}}{{\cos {\text{x}}}}
we get, x tan(9x)=xsin(9x)cos(9x){\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = {\text{x}}\dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}
Now changing the x{\text{x}} into 1  1x \dfrac{{1{\text{ }}}}{{{\text{ }}\dfrac{1}{{\text{x}}}{\text{ }}}},
x tan(9x)=sin(9x)cos(9x)(1x)\Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)\left( {\dfrac{1}{{\text{x}}}} \right)}}
Now we have to multiply and divide 99, we get
x tan(9x)=9×sin(9x)cos(9x)(1x)(9)\Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9 \times \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)\left( {\dfrac{1}{{\text{x}}}} \right)(9)}}
x tan(9x)=9×sin(9x)(9x)×1cos(9x)\Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9 \times \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\left( {\dfrac{9}{{\text{x}}}} \right)}} \times \dfrac{1}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}
Now applying the properties of limit,
i.e. limxsinxx=1\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sin {\text{x}}}}{{\text{x}}} = 1
So we get,
limxx tan(9x)=9×sin(9x)(9x)×1cos(9x)\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9 \times \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\left( {\dfrac{9}{{\text{x}}}} \right)}} \times \dfrac{1}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}
limxx tan(9x)=9(1)1cos(9x)\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)\dfrac{1}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}
Apply limit x{\text{x}} \to \infty we get,
limxx tan(9x)=9(1)1cos(9)\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)\dfrac{1}{{\cos \left( {\dfrac{9}{\infty }} \right)}}
That will makecos(9)\cos \left( {\dfrac{9}{\infty }} \right) to cos(0)\cos \left( 0 \right)
limxx tan(9x)=9(1)1cos(0)\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)\dfrac{1}{{\cos \left( 0 \right)}}
As we all know that cos(0)\cos \left( 0 \right)= 11 we get,
limxx tan(9x)=9(1)(1)\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)(1)
limxx tan(9x)=9\Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9
And we got the required correct answer.