Solveeit Logo

Question

Question: How do you find the limit of \(\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}\) as ...

How do you find the limit of x(cot2x)(cscx)+1\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1} as x approaches to 0?

Explanation

Solution

We have been given to find the limit of the function whose variable-x is approaching to zero. We shall first substitute x=0x=0 in the equation to check the form of the given limit to analyze the method of finding the limit. Then, we will simplify the cosecant and cotangent trigonometric functions in the form of sine and cosine functions to further simplify the function and calculate the limit.

Complete step by step solution:
We have to find limx0x(cot2x)(cscx)+1\displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}.
First, we shall substitute x=0x=0 to see whether l’Hospital’s rule can be applied or not.
Putting x=0x=0, we get
0(cot20)(csc0)+1=01\dfrac{0\left( {{\cot }^{2}}0 \right)}{\left( \csc 0 \right)+1}=\dfrac{0}{1}
This implies that l’Hospitals’s rule cannot be used.
From our basic knowledge of trigonometry, we know that cscx=1sinx\csc x=\dfrac{1}{\sin x} and cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}. Thus, substituting these values in the given function, we have
limx0x(cot2x)(cscx)+1=limx0x(cosxsinx)2(1sinx)+1\Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}=\displaystyle \lim_{x \to 0}\dfrac{x{{\left( \dfrac{\cos x}{\sin x} \right)}^{2}}}{\left( \dfrac{1}{\sin x} \right)+1}
limx0x(cot2x)(cscx)+1=limx0[xcos2xsin2x.11+sinxsinx] limx0x(cot2x)(cscx)+1=limx0[xcos2xsin2x.sinx1+sinx] limx0x(cot2x)(cscx)+1=limx0[xsinx.cos2x1+sinx] limx0x(cot2x)(cscx)+1=limx0[1sinxx.cos2x1+sinx] \begin{aligned} & \Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}=\displaystyle \lim_{x \to 0}\left[ x\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}.\dfrac{1}{\dfrac{1+\sin x}{\sin x}} \right] \\\ & \Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}=\displaystyle \lim_{x \to 0}\left[ x\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}.\dfrac{\sin x}{1+\sin x} \right] \\\ & \Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}=\displaystyle \lim_{x \to 0}\left[ \dfrac{x}{\sin x}.\dfrac{{{\cos }^{2}}x}{1+\sin x} \right] \\\ & \Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}=\displaystyle \lim_{x \to 0}\left[ \dfrac{1}{\dfrac{\sin x}{x}}.\dfrac{{{\cos }^{2}}x}{1+\sin x} \right] \\\ \end{aligned}
From the properties of limit, we have limx0sinxx=1\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1. Applying this property, we get
limx0x(cot2x)(cscx)+1=limx0[11.cos2x1+sinx]\Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}=\displaystyle \lim_{x \to 0}\left[ \dfrac{1}{1}.\dfrac{{{\cos }^{2}}x}{1+\sin x} \right]
limx0x(cot2x)(cscx)+1=limx0cos2x1+sinx\Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}=\displaystyle \lim_{x \to 0}\dfrac{{{\cos }^{2}}x}{1+\sin x}
Finally, we shall put the value of limit in our equation.
limx0x(cot2x)(cscx)+1=cos201+sin0\Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}=\dfrac{{{\cos }^{2}}0}{1+\sin 0}
We also know that sin0=0\sin 0=0 and cos0=1\cos 0=1. Putting these values, we get
limx0x(cot2x)(cscx)+1=121+0\Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}=\dfrac{{{1}^{2}}}{1+0}
limx0x(cot2x)(cscx)+1=1\Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1}=1
Therefore, the value of limit of x(cot2x)(cscx)+1\dfrac{x\left( {{\cot }^{2}}x \right)}{\left( \csc x \right)+1} as x approaches to 0 is 1.

Note: On applying the value of limit, if the limit comes out to be of the form 00\dfrac{0}{0} or \dfrac{\infty }{\infty }, then we can simply use the l’Hospital’s rule to calculate the limit. According to the l’Hospital’s rule, we shall differentiate the numerator and the denominator separately considering them to be two different functions. Then, we shall keep repeating this procedure until we get a finite value of our limit. Further, we can put the value of the given limit and compute our final answer.