Solveeit Logo

Question

Question: How do you find the limit of \[\dfrac{{|x - 3|}}{{x - 3}}\] as \[x\] approaches \[{3^ - }?\]...

How do you find the limit of x3x3\dfrac{{|x - 3|}}{{x - 3}} as xx approaches 3?{3^ - }?

Explanation

Solution

In the question we have to find the limit of a function such that xx approaches 3{3^ - } . Here first we need to understand what 3{3^ - } means. When we say x3x \to {3^ - } it means that the value of xx approaches 33 from the left-hand side in the number system. In order to solve this question, we will use the formula for left-hand limit i.e., limxaf(x)=limh0f(ah)\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {a - h} \right) . After that we will simplify and get the result.

Complete step by step answer:
We are given the function f(x)=x3x3f\left( x \right) = \dfrac{{|x - 3|}}{{x - 3}}
And we have to calculate the value of limx3x3x3\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{|x - 3|}}{{x - 3}}
Now using the formula of the left-hand limit of a function i.e.,
limxaf(x)=limh0f(ah)\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {a - h} \right)
Here, a=3a = 3
Therefore, we have
limx3f(x)=limh0f(3h) (i)\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {3 - h} \right){\text{ }} - - - \left( i \right)
Since we have f(x)=x3x3f\left( x \right) = \dfrac{{|x - 3|}}{{x - 3}}
Then the value of f(3h)=3h33h3f\left( {3 - h} \right) = \dfrac{{|3 - h - 3|}}{{3 - h - 3}}
Now on substituting in the equation (1)\left( 1 \right) we get
limx3x3x3=limh03h33h3\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{|x - 3|}}{{x - 3}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{|3 - h - 3|}}{{3 - h - 3}}
On solving right-hand side of the above expression, we get
limx3x3x3=limh0hh\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{|x - 3|}}{{x - 3}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{| - h|}}{{ - h}}
Now we know that
x =x| - x|{\text{ }} = x
Therefore, we get
limx3x3x3=limh0hh\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{|x - 3|}}{{x - 3}} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{ - h}}
On cancelling numerator and denominator, we have
limx3x3x3=limh0 1\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{|x - 3|}}{{x - 3}} = \mathop {\lim }\limits_{h \to 0} {\text{ }} - 1
limx3x3x3=1\Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{|x - 3|}}{{x - 3}} = - 1
Hence, the value of the function x3x3\dfrac{{|x - 3|}}{{x - 3}} as xx approaches 3{3^ - } is 1 - 1

Note:
Limit of a function f(x)f\left( x \right) such that xx approaches a{a^ - } is called the left-hand limit of the function as it approaches from the left-hand side. It also means that xx is some value which is less than 33 and is moving towards the rightward direction in the number system line.
Also note there is an alternative way to solve this problem such as:
We are given the function f(x)=x3x3f\left( x \right) = \dfrac{{|x - 3|}}{{x - 3}}
And we have to calculate the value of limx3x3x3\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{|x - 3|}}{{x - 3}}
As xx is some value which is less than 33
Therefore, x3 =(x3)|x - 3|{\text{ }} = - \left( {x - 3} \right)
So, we get
limx3x3x3 = limx3(x3)x3\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{|x - 3|}}{{x - 3}}{\text{ }} = {\text{ }}\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{ - \left( {x - 3} \right)}}{{x - 3}}
limx3x3x3 = limx31\Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{|x - 3|}}{{x - 3}}{\text{ }} = {\text{ }}\mathop {\lim }\limits_{x \to {3^ - }} - 1
limx3x3x3 =1\Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{|x - 3|}}{{x - 3}}{\text{ }} = - 1
which is the required answer.