Solveeit Logo

Question

Question: How do you find the limit of \[\dfrac{{{{\tan }^2}x}}{x}\] as \[x \to 0?\]...

How do you find the limit of tan2xx\dfrac{{{{\tan }^2}x}}{x} as x0?x \to 0?

Explanation

Solution

Hint : This question involves the operation of addition/ subtraction/ multiplication/ division. We need to know how to expand the square terms. We need to know the basic trigonometric conditions. We need to know how to apply the limit with the given equation. We need to know the trigonometric table values to make the easy calculation.

Complete step-by-step answer :
The given equation in the question is shown below,
tan2xx\dfrac{{{{\tan }^2}x}}{x} as x0?x \to 0?
The above equation can also be written as,
limx0tan2xx=?\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = ? (1) \to \left( 1 \right)
To solve the above equation, we have to solve the above-mentioned term as follows,
limx0tan2xx=limx0tanxx.tanx(2)\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x}.\tan x \to \left( 2 \right)
We know that,
tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
So, the equation (2)\left( 2 \right) can be written as,

(2)limx0tan2xx=limx0tanxxtanx limx0tanxxtanx=limx01xsinxcosxsinxcosx  \left( 2 \right) \to \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} \cdot \tan x \\\ \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} \cdot \tan x = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{{\sin x}}{{\cos x}} \\\

The above equation can also be written as,
limx01xsinxcosxsinxcosx=limx0sinxxsinxcosx1cosx\mathop {\lim }\limits_{x \to 0} \dfrac{1}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{{\sin x}}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}}
We know that,
cosxcosx=cos2x\cos x \cdot \cos x = {\cos ^2}x
So, we get
limx0sinxxsinxcosx1cosx=limx0sinxxsinx1cos2x\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \sin x \cdot \dfrac{1}{{{{\cos }^2}x}}
Let’s apply the limit in the above equation we get,
limx0sinxxsinxcosx1cosx=limx0sinxxlimx0sinxlimx01cos2x(3)\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \mathop {\lim }\limits_{x \to 0} \sin x \cdot \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}} \to \left( 3 \right)
Here, we have limx0\mathop {\lim }\limits_{x \to 0} , so we would put zero for where we have xx .
For solving the equation (3)\left( 3 \right) , we have
limx0sinxx\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x}
We can’t apply the mentioned limit in the above equation, because if we apply the limit the denominator becomes zero. We know that the denominator would not be equal to zero.
Next, we have
limx0sinx=sin(0)=0\mathop {\lim }\limits_{x \to 0} \sin x = \sin \left( 0 \right) = 0 (By using trigonometric table values.)
Next, we have
limx01cos2x=1cos2(0)\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}} = \dfrac{1}{{{{\cos }^2}\left( 0 \right)}}
We know that
cos0=1\cos 0 = 1
So, we get
limx01cos2x=1cos2(0)=112=1\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}} = \dfrac{1}{{{{\cos }^2}\left( 0 \right)}} = \dfrac{1}{{{1^2}}} = 1
By using these values the equation (3)\left( 3 \right) becomes,
(3)limx0sinxxsinxcosx1cosx=limx0sinxxlimx0sinxlimx01cos2x\left( 3 \right) \to \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \mathop {\lim }\limits_{x \to 0} \sin x \cdot \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}}

limx0sinxxsinxcosx1cosx=limx0sinxx00 limx0sinxxsinxcosx1cosx=0  \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot 0 \cdot 0 \\\ \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = 0 \\\

(We know that if any term multiplies with 00 the answer becomes 00 .)
So, the final answer is,
limx0tan2xx=0\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = 0
So, the correct answer is “0”.

Note : Note that the denominator term would not be equal to zero and when any number is multiplied with zero the answer is always zero. limx0\mathop {\lim }\limits_{x \to 0} means we would apply zero for where we have the term xx . Remember the basic trigonometric conditions and trigonometric table values. This type of question involves basic arithmetic operations.