Solveeit Logo

Question

Question: How do you find the limit of \(\dfrac{\left| x+2 \right|}{x+2}\) as \(x\) approaches \(-2\)?...

How do you find the limit of x+2x+2\dfrac{\left| x+2 \right|}{x+2} as xx approaches 2-2?

Explanation

Solution

In this problem we need to calculate the limit value of the given function at given xx value. For this we will first check whether the given function exists at the limit value or not at a given xx value. So, we will first calculate the limit from the left at given xx value and the limit from the right at given xx value. For this we will write first define the given function by using the known function definition \left| x \right|=\left\\{ \begin{matrix} x,\text{ if }x\ge 0 \\\ -x,\text{ if }x<0 \\\ \end{matrix} \right.. We will this function definition to define the function x+2\left| x+2 \right|. After defining the function, we will calculate the right-hand limit and left-hand limit and then we will conclude the problem by comparing both the values.

Complete step-by-step solution:
Given function, x+2x+2\dfrac{\left| x+2 \right|}{x+2}.
We know that the value of the function x\left| x \right| is
\left| x \right|=\left\\{ \begin{matrix} x,\text{ if }x\ge 0 \\\ -x,\text{ if }x<0 \\\ \end{matrix} \right.
From the above definition, the value of the function x+2\left| x+2 \right| will be
\left| x+2 \right|=\left\\{ \begin{matrix} x+2,\text{ if }x\ge -2 \\\ -\left( x+2 \right),\text{ if }x<-2 \\\ \end{matrix} \right.
Given that xx approaches 2-2.
Calculating the left-hand side limit or limit from the left-hand side.
Left hand side limit means the value of xx is less than 2-2 i.e., x<2x<-2.
If x<2x<-2 the value of the function x+2\left| x+2 \right| is
x+2=(x+2)\left| x+2 \right|=-\left( x+2 \right)
From the above value the value of the given function x+2x+2\dfrac{\left| x+2 \right|}{x+2} will be
x+2x+2=(x+2)x+2 x+2x+2=1 \begin{aligned} & \dfrac{\left| x+2 \right|}{x+2}=\dfrac{-\left( x+2 \right)}{x+2} \\\ & \Rightarrow \dfrac{\left| x+2 \right|}{x+2}=-1 \\\ \end{aligned}
Applying the left-hand limit to the given function, then we will get
limx2x+2x+2=limx21 limx2x+2x+2=1 \begin{aligned} & \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}=\displaystyle \lim_{x \to -{{2}^{-}}}-1 \\\ & \Rightarrow \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}=-1 \\\ \end{aligned}
Calculating the right-hand limit or limit from the right hand side.
Right hand side limit means x>2x>-2.
If x>2x>-2 the value of the function x+2\left| x+2 \right| is
x+2=x+2\left| x+2 \right|=x+2
From the above value the value of the given function x+2x+2\dfrac{\left| x+2 \right|}{x+2} will be
x+2x+2=x+2x+2 x+2x+2=1 \begin{aligned} & \dfrac{\left| x+2 \right|}{x+2}=\dfrac{x+2}{x+2} \\\ & \Rightarrow \dfrac{\left| x+2 \right|}{x+2}=1 \\\ \end{aligned}
Applying the right-hand limit to the given function, then we will get
limx2+x+2x+2=limx2+1 limx2+x+2x+2=1 \begin{aligned} & \displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}=\displaystyle \lim_{x \to -{{2}^{+}}}1 \\\ & \Rightarrow \displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}=1 \\\ \end{aligned}
Here we have limx2+x+2x+2limx2x+2x+2\displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}\ne \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}. So, the limit of the function doesn’t exist.

Note: We can clearly observe that the function is simply y=1y=1 for x>2x>-2 and y=1y=-1 for x<2x<-2. So, we can’t calculate the limit of the function. We can also observe this in the graph of the given equation which is shown in below figure