Solveeit Logo

Question

Question: How do you find the limit of \( \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} \) as \( x \) approaches i...

How do you find the limit of (lnx)2x\dfrac{{{{\left( {\ln x} \right)}^2}}}{x} as xx approaches infinity?

Explanation

Solution

Hint : L’Hospital’s rule provides a technique to evaluate limits of indeterminate form. If in a given limit limxcf(x)g(x)\mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} , substituting xx with cc in the function f(x)g(x)\dfrac{{f(x)}}{{g(x)}} gives an indeterminate form like 00\dfrac{0}{0} or \dfrac{\infty }{\infty } , we apply L'Hopital's rule. According to this rule, we have to substitute both the functions in the numerator and denominator with their respective derivatives.
i.e., limxcf(x)g(x)=limxcf(x)g(x)\mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}}
And then, we again substitute xx with cc in the function f(x)g(x)\dfrac{{f'(x)}}{{g'(x)}} to check the value. If the value is a definite number, we have obtained the answer. But if it again yields an indeterminate form, we continue to apply the rule by substituting both the functions in the numerator and denominator with their respective derivatives till we obtain a definite value.
So check whether L’Hospital’s rule is applicable or not. If yes, try to apply and get the answer.

Complete step-by-step answer :
(i)
We are given,
limx(lnx)2x\mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x}
When we substitute xx as \infty in (lnx)2x\dfrac{{{{\left( {\ln x} \right)}^2}}}{x} , we obtain:
(ln)2\dfrac{{{{\left( {\ln \infty } \right)}^2}}}{\infty }
Since, ln=\ln \infty = \infty , we get:
()2=\dfrac{{{{\left( \infty \right)}^2}}}{\infty } = \dfrac{\infty }{\infty } i.e., an indeterminate form.
(ii)
As we know that L’Hospital’s rule helps to evaluate limits of indeterminate form, we will apply it here. So according to L’Hospital’s rule,
limxcf(x)g(x)=limxcf(x)g(x)\mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}}
Here, f(x)=(lnx)2f(x) = {\left( {\ln x} \right)^2} and g(x)=xg(x) = x
Since we know that, ddx(lnx)=1x\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}
Therefore, by chain rule,
f(x)=2×lnx×1xf'(x) = 2 \times \ln x \times \dfrac{1}{x}
i.e., f(x)=2(lnx)xf'(x) = \dfrac{{2\left( {\ln x} \right)}}{x}
and g(x)=1g'(x) = 1
(iii)
Now, applying L’Hospital’s rule i.e., substituting the numerator and denominator with their respective derivatives, we get:
limx(lnx)2x=limx2(lnx)x×1\mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2\left( {\ln x} \right)}}{{x \times 1}}
i.e.,
limx(lnx)2x=limx2(lnx)x\mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2\left( {\ln x} \right)}}{x}
(iv)
Now, we will again check by substituting xx as \infty in 2(lnx)x\dfrac{{2\left( {\ln x} \right)}}{x} . We will get:
2(ln)\dfrac{{2\left( {\ln \infty } \right)}}{\infty }
Since, ln=\ln \infty = \infty , we get:
2()=\dfrac{{2\left( \infty \right)}}{\infty } = \dfrac{\infty }{\infty } i.e., an indeterminate form.
Therefore, we will again apply the L’Hospital’s rule and will replace the numerator and the denominator with their derivatives respectively.
This time we have f(x)=2(lnx)f\left( x \right) = 2\left( {\ln x} \right) . Therefore,
f(x)=2(1x)f'\left( x \right) = 2\left( {\dfrac{1}{x}} \right)
And since, g(x)=xg\left( x \right) = x . Therefore,
g(x)=1g'\left( x \right) = 1
(v)
Now, we have:
limx2(lnx)x=limx2x\mathop {\lim }\limits_{x \to \infty } \dfrac{{2\left( {\ln x} \right)}}{x} = \mathop {\lim }\limits_{x \to \infty } \dfrac{2}{x}
Putting x=x = \infty in 2x\dfrac{2}{x} gives 00 which is a definite value.
Therefore, limx(2x)=0\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{2}{x}} \right) = 0
And hence, limx(lnx)2x=0\mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} = 0

Note : Note that the graph of lnx\ln x approaches infinity when xx is infinity i.e., ln=\ln \infty = \infty . We have to repeat the L’Hospital’s rule till we get a definite value instead of an indeterminate form. Here, we got 1\dfrac{1}{\infty } which we know is 00 and not an indeterminate form. So, it will be our final answer. Do not confuse 00 by 00\dfrac{0}{0} form as 00 is a definite value and 00\dfrac{0}{0} is an indeterminate form.