Solveeit Logo

Question

Question: How do you find the limit of \( \dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} \) as \( x \) approaches to infini...

How do you find the limit of 2ex2+3ex\dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} as xx approaches to infinity?

Explanation

Solution

Hint : In order to determine the limit of the above function, replace all the ex{e^x} with ex{e^{ - x}} in the expression by multiplying and dividing the limit with ex{e^{ - x}} in order to obtain a consistent result as when xx \to \infty then ex0{e^{ - x}} \to 0 . With the use of exponent law , simplify the limit and put the result ex0{e^{ - x}} \to 0 when xx \to \infty to obtain the required result.

Complete step by step solution:
We are given a exponential function in variable xx i.e. 2ex2+3ex\dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} having limit xx \to \infty .
limx2ex2+3ex\mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - {e^x}}}{{2 + 3{e^x}}}
To better understand and calculate the limits of the above expression, let's look into the graph of the y=2ex2+3exy = \dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} .

As we can clearly see that the if the limit for xx \to \infty, then ex{e^x} \to \infty which will make the function inconsistent but one the other side we can see is xx \to \infty then ex0{e^{ - x}} \to 0
So it's better to replace the ex{e^x} with ex{e^{ - x}} in the expression to get the result of the limit completely in the consistent form.
And to do so , we will be multiplying and dividing the limit expression with ex{e^{ - x}} , rewriting the limit function as

limx2ex2+3ex=limx2ex2+3ex×exex limx2ex2+3ex=limxex(2ex)ex(2+3ex)   \mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} \times \dfrac{{{e^{ - x}}}}{{{e^{ - x}}}} \\\ \therefore \mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{e^{ - x}}\left( {2 - {e^x}} \right)}}{{{e^{ - x}}\left( {2 + 3{e^x}} \right)}} \;

Using the distributive law of multiplication to expand and multiply the terms as A(B+C)=AB+ACA\left( {B + C} \right) = AB + AC , we can rewrite the limit as
limx2ex2+3ex=limx2exex.ex2ex+3ex.ex\mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{e^{ - x}} - {e^{ - x}}.{e^x}}}{{2{e^{ - x}} + 3{e^{ - x}}.{e^x}}}
Using the exponent law to simplify the above expression as am×an=am+n{a^m} \times {a^n} = {a^{m + n}} . We get
limx2ex2+3ex=limx2ex12ex+3\mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{e^{ - x}} - 1}}{{2{e^{ - x}} + 3}}
Now using the result ex0{e^x} \to 0 as xx \to \infty , we have

limx2ex2+3ex=limx2(0)12(0)+3 limx2ex2+3ex=13   \mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2\left( 0 \right) - 1}}{{2\left( 0 \right) + 3}} \\\ \therefore \mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} = - \dfrac{1}{3} \;

Hence the above result is completely inconsistent.
Therefore the limit of 2ex2+3ex\dfrac{{2 - {e^x}}}{{2 + 3{e^x}}} as xx \to \infty is equal to 13 - \dfrac{1}{3}.
So, the correct answer is “ 13 - \dfrac{1}{3}”.

Note : 1. Don’t forget to cross-check your answer.
2.After putting the Limit the result should never in the indeterminate form 00or±±\dfrac{0}{0}\,or\,\dfrac{{ \pm \infty }}{{ \pm \infty }} . If it is contained, apply some operation to modify the result or use the L-Hospitals rule .
3. ee is the exponential constant having value equal to 2.718282.71828
4.Avoid any step jump in such types of questions as this might increase the chances of mistakes.
5. While expanding the terms, use the proper sign with the terms.