Question
Question: How do you find the limit of \(arctan\left( x \right)\) as \(x\) approaches infinity?...
How do you find the limit of arctan(x) as x approaches infinity?
Solution
The question is solved by finding out the principal value of the function by putting x=∞ . Then the general limit of the inverse tan function is obtained which is the sum of principal value and nπ . As the values of x are tending to positive infinity only the specific range of the general limit is considered.
Complete step by step solution:
The arctan(x) is the inverse of the tanx function. It returns an angle for the numerical value of the tangent given.
⇒Arctan(x) = tan(x)1
The domain of the trigonometric function is the set of all real numbers and the function ranges from −2πThegraphoftheinversetangentfunctionissymmetricalaboutthex−axisandisboundedbetween-\dfrac{\pi }{2}and\dfrac{\pi }{2}Thegraphneitherhasanymaximaorminimahavingaperiodof\piThegeneralsolutionorprincipalvaluesoftheinversetangentfunctionisgivenas,\Rightarrow 2\pi k~+~\dfrac{\pi }{2};askapproachespositiveinfinity.Theaboveequationcanbesimplifiedas,\Rightarrow \pi \left( 2k\text{ }+\text{ }\dfrac{1}{2} \right)Letusassumethaty\text{ }=\text{ }arctan\left( x \right)Accordingtothequestion,Fromthetrigonometrictable,weknowthatarctan\left( \infty \right)is\dfrac{\pi }{2}Writingthesameweget,\displaystyle \lim_{x \to \dfrac{\pi }{2}}tanx=+\inftyNowtakingthetangentontheotherside,\Rightarrow \displaystyle \lim_{x \to +\infty }y=\dfrac{\pi }{2}Asthevalueofxtendstoinfinitytheprincipalvalueofyobtainedis\dfrac{\pi }{2}Thegenerallimitfortheabovetrigonometricfunctionisgivenasthesumofprincipalvalueandkπwherek=0,\pm 1,\pm 2.....Hencethevaluesofxapproachingpositiveinfinitythevaluesofkmustbeevenwhichmeansthegenerallimitisequalto\dfrac{\pi }{2}\text{ }+\text{ }2k\piwherek=0,\pm 1,\pm 2.....$.
Note: We must know the formula for the general solutions of arctan(x) to solve the question in an easy way. We must note that the general limit of the function is given by the principal value +nπ. The general limit of the values of x approaching negative infinity is given by 2π + (2k+1)2π where k=0,±1,±2..... that is only the odd integral of π.