Solveeit Logo

Question

Question: How do you find the length of the curve \[x = 1 + 3{t^2}\], \[y = 4 + 2{t^3}\], where \[0 \leqslant ...

How do you find the length of the curve x=1+3t2x = 1 + 3{t^2}, y=4+2t3y = 4 + 2{t^3}, where 0t10 \leqslant t \leqslant 1?

Explanation

Solution

Length of a curve is given by ab1+(dydx)2dx\int\limits_a^b {\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} } dx. So, we will find dydx\dfrac{{dy}}{{dx}} by finding dydt\dfrac{{dy}}{{dt}} and dxdt\dfrac{{dx}}{{dt}} and then dividing them. Then we will substitute dx=6tdtdx = 6tdt. Then we will put all these values in the formula to find the length of the curve and we will integrate by making proper substitution. Then we will simplify it to find the result.

Complete step by step answer:
We have x=1+3t2x = 1 + 3{t^2} and y=4+2t3y = 4 + 2{t^3}.
Differentiating xx with respect to tt, we get
dxdt=ddt(1+3t2)\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {1 + 3{t^2}} \right)
dxdt=6t(1)\Rightarrow \dfrac{{dx}}{{dt}} = 6t - - - (1)
Differentiating yy with respect to tt, we get
dydt=ddx(4+2t3)\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dx}}\left( {4 + 2{t^3}} \right)
dydt=6t2(2)\Rightarrow \dfrac{{dy}}{{dt}} = 6{t^2} - - - (2)
Dividing (2)(2) and (1)(1), we get
dydtdxdt=6t26t\Rightarrow \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}} = \dfrac{{6{t^2}}}{{6t}}

On simplification, we get
dydx=t(3)\Rightarrow \dfrac{{dy}}{{dx}} = t - - - (3)
Also, from (1)(1), we can write
dx=6tdt(4)\Rightarrow dx = 6tdt - - - (4)
As we know that, Arc Length=ab1+(dydx)2dx(5){\text{Arc Length}} = \int\limits_a^b {\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} } dx - - - (5)
Given, 0t10 \leqslant t \leqslant 1. Putting the values from (3)(3) and (4)(4) in (5)(5), we get
Arc Length=01(1+(t)2)×6tdt\Rightarrow {\text{Arc Length}} = \int\limits_0^1 {\left( {\sqrt {1 + {{\left( t \right)}^2}} } \right)} \times 6tdt
On rewriting, we get
Arc Length=3×012t(1+t2)dt(6)\Rightarrow {\text{Arc Length}} = 3 \times \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt - - - (6)

Now, let I=2t(1+t2)dtI = \int {2t\left( {\sqrt {1 + {t^2}} } \right)dt}
Let 1+t2=u1 + {t^2} = u
Differentiating w.r.t tt, we get
2t=dudt\Rightarrow 2t = \dfrac{{du}}{{dt}}
dt=du2t\Rightarrow dt = \dfrac{{du}}{{2t}}
Therefore, we get
I=2t×u×du2tI = \int {2t \times \sqrt u \times \dfrac{{du}}{{2t}}}
Cancelling the common terms and on rewriting, we get
I=(u)12duI = \int {{{\left( u \right)}^{\dfrac{1}{2}}}du}
On integrating, we get
I=(u)12+1(12+1)du\Rightarrow I = \int {\dfrac{{{{\left( u \right)}^{\dfrac{1}{2} + 1}}}}{{\left( {\dfrac{1}{2} + 1} \right)}}du}

On simplification, we get
I=23(u)32\Rightarrow I = \dfrac{2}{3}{\left( u \right)^{\dfrac{3}{2}}}
Substituting back 1+t2=u1 + {t^2} = u, we get
I=23(1+t2)32\Rightarrow I = \dfrac{2}{3}{\left( {1 + {t^2}} \right)^{\dfrac{3}{2}}}
So, 012t(1+t2)dt=[23(1+t2)32]01\int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \left[ {\dfrac{2}{3}{{\left( {1 + {t^2}} \right)}^{\dfrac{3}{2}}}} \right]_0^1
Putting the upper and lower limits, we get
012t(1+t2)dt=[23(1+(1)2)3223(1+(0)2)32]\Rightarrow \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \left[ {\dfrac{2}{3}{{\left( {1 + {{\left( 1 \right)}^2}} \right)}^{\dfrac{3}{2}}} - \dfrac{2}{3}{{\left( {1 + {{\left( 0 \right)}^2}} \right)}^{\dfrac{3}{2}}}} \right]

On simplification, we get
012t(1+t2)dt=[23(2)3223(1)32]\Rightarrow \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \left[ {\dfrac{2}{3}{{\left( 2 \right)}^{\dfrac{3}{2}}} - \dfrac{2}{3}{{\left( 1 \right)}^{\dfrac{3}{2}}}} \right]
On further simplification, we get
012t(1+t2)dt=23(2321)(7)\Rightarrow \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \dfrac{2}{3}\left( {{2^{\dfrac{3}{2}}} - 1} \right) - - - (7)
Putting (7)(7) in (6)(6), we get
Arc Length=3×23(2321)\Rightarrow {\text{Arc Length}} = 3 \times \dfrac{2}{3}\left( {{2^{\dfrac{3}{2}}} - 1} \right)
Cancelling the common terms, we get
Arc Length=2(2321)\therefore {\text{Arc Length}} = 2\left( {{2^{\dfrac{3}{2}}} - 1} \right)

Therefore, the length of the curve x=1+3t2x = 1 + 3{t^2}, y=4+2t3y = 4 + 2{t^3} is 2(2321)2\left( {{2^{\dfrac{3}{2}}} - 1} \right).

Note: If we want to calculate the length of any curve given by f(x)f(x) in an interval aa to bb, then f(x)f(x) must be continuous in the interval aa to bb. Also, we require f(x)f(x) to be differentiable and its derivative is required as we are integrating an expression involving f(x)f'(x).