Solveeit Logo

Question

Question: How do you find the inverse of \(A=\left[ \begin{matrix} 3 & 5 \\\ 2 & 4 \\\ \end{matrix...

How do you find the inverse of A=[35 24 ]A=\left[ \begin{matrix} 3 & 5 \\\ 2 & 4 \\\ \end{matrix} \right] ?

Explanation

Solution

For finding the inverse matrix of the given matrix, first of all we will check that if it is possible to find the inverse matrix or not by calculating its determinants. If the determinant is not equal to zero that means we can get the inverse of the given matrix. Now, we will calculate the adjoint matrix of the given matrix. After that we will use the formula of inverse matrix that is:
A1=1Aadj A\Rightarrow {{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\text{ A}

Complete step-by-step answer:
Since, we have a matrix in the question that is:
A=[35 24 ]\Rightarrow A=\left[ \begin{matrix} 3 & 5 \\\ 2 & 4 \\\ \end{matrix} \right]
Now, we will calculate its determinants as:
3×42×5\Rightarrow 3\times 4-2\times 5
Here, we will complete the multiplication first as:
1210\Rightarrow 12-10
Now, we will subtract 1010 from 1212 and will have:
2\Rightarrow 2
Since, determinants of a given matrix are not equal to zero that means we will get the inverse of the given matrix. Now, we will find the matrix of the cofactor of element of given matrix as:
A=[42 53 ]\Rightarrow A'=\left[ \begin{matrix} 4 & -2 \\\ -5 & 3 \\\ \end{matrix} \right]
Now, we will calculate the adjoint of the given matrix as:
adj A = transpose matrix of A !!!! \Rightarrow adj\text{ A = transpose matrix of A }\\!\\!'\\!\\!\text{ }
adj A = [45 23 ]\Rightarrow adj\text{ A = }\left[ \begin{matrix} 4 & -5 \\\ -2 & 3 \\\ \end{matrix} \right]
Since, we got the determinant of given matrix and adjoint matrix of the given matrix. So, we will calculate the inverse matrix of the given matrix as:
A1=1Aadj A\Rightarrow {{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\text{ A}
Now, we will apply the value of determinant and adjoint matrix in the above formula as:
A1=12 [45 23 ]\Rightarrow {{A}^{-1}}=\dfrac{1}{2}\text{ }\left[ \begin{matrix} 4 & -5 \\\ -2 & 3 \\\ \end{matrix} \right]
Here, we will multiply the outer value with each element of the adjoint matrix as:
A1= [12×412×5 12×212×3 ]\Rightarrow {{A}^{-1}}=\text{ }\left[ \begin{matrix} \dfrac{1}{2}\times 4 & \dfrac{1}{2}\times -5 \\\ \dfrac{1}{2}\times -2 & \dfrac{1}{2}\times 3 \\\ \end{matrix} \right]
Now, we will the required calculation to complete the process as:
A1= [252 132 ]\Rightarrow {{A}^{-1}}=\text{ }\left[ \begin{matrix} 2 & \dfrac{-5}{2} \\\ -1 & \dfrac{3}{2} \\\ \end{matrix} \right]
Hence, the inverse matrix of the given matrix is [252 132 ]\left[ \begin{matrix} 2 & \dfrac{-5}{2} \\\ -1 & \dfrac{3}{2} \\\ \end{matrix} \right] .

Note: Here, we need to remember some points to find the inverse of any matrix. First we need to calculate the determinant of the given matrix. If it is not equal to zero that means we will get the inverse of the given matrix, otherwise not. Then, we need to remember to calculate the matrix of cofactor of elements of given matrix and it will be as:
Let, the matrix is AA that is:
A=[a11a12 a21a22 ]A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} \\\ {{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right]
Now, the matrix of cofactor of the above matrix will be:
B=[a22a21 a12a11 ]B=\left[ \begin{matrix} {{a}_{22}} & -{{a}_{21}} \\\ -{{a}_{12}} & {{a}_{11}} \\\ \end{matrix} \right]
Then, we will calculate transpose matrix of BB that is adjoint matrix of AA as:
adj A=[a22a12 a21a11 ]adj\text{ A}=\left[ \begin{matrix} {{a}_{22}} & -{{a}_{12}} \\\ -{{a}_{21}} & {{a}_{11}} \\\ \end{matrix} \right]
After that we will use the formula for getting the inverse matrix.