Solveeit Logo

Question

Question: How do you find the integral of \({\tan ^2}\left( x \right)\sec \left( x \right)dx\)?...

How do you find the integral of tan2(x)sec(x)dx{\tan ^2}\left( x \right)\sec \left( x \right)dx?

Explanation

Solution

First, use trigonometry identity to find the value of tan2x{\tan ^2}x and put the value of tan2x{\tan ^2}x in the given integral. Then, use distributive property in integral. Next, use property (III) to split the integrals. The, solve the first integral by integration by parts and second integral using (IV). Substitute all the values in the combined integral and get the required result.

Formula used:

  1. The integral of the product of a constant and a function = the constant ×\times integral of the function.
    i.e., (kf(x)dx)=kf(x)dx\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} , where kk is a constant.
  2. Trigonometric identity: tan2x+1=sec2x{\tan ^2}x + 1 = {\sec ^2}x
  3. The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
    i.e., [f(x)±g(x)]dx=f(x)dx±g(x)dx\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx}
  4. Integration formula: sec2xdx=tanx\int {{{\sec }^2}xdx} = \tan x and secxdx=lnsecx+tanx\int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|
  5. Differentiation formula: ddx(secx)=secxtanx\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x
  6. Integration by parts: udv=uvvdu\int {udv} = uv - \int {vdu}

Complete step by step solution:
We have to find tan2(x)sec(x)dx\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} …(i)
Use identity tan2xsec2x=1{\tan ^2}x - {\sec ^2}x = 1, to find the value of tan2x{\tan ^2}x.
Since, tan2x+1=sec2x{\tan ^2}x + 1 = {\sec ^2}x.
So, tan2x=sec2x1{\tan ^2}x = {\sec ^2}x - 1.
Now, put the value of tan2x{\tan ^2}x in integral (i).
tan2(x)sec(x)dx=(sec2x1)secxdx\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \int {\left( {{{\sec }^2}x - 1} \right)\sec xdx} …(ii)
Use distributive property in integral (ii).
tan2(x)sec(x)dx=(sec3xsecx)dx\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \int {\left( {{{\sec }^3}x - \sec x} \right)dx} …(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., [f(x)±g(x)]dx=f(x)dx±g(x)dx\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx}
So, in above integral (iii), we can use above property
tan2(x)sec(x)dx=sec3xdxsecxdx\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \int {{{\sec }^3}xdx} - \int {\sec xdx} …(iv)
First integral: sec3xdx\int {{{\sec }^3}xdx}
It can be written as sec2xsecxdx\int {{{\sec }^2}x\sec xdx}
Now, use integration by parts with u=secxu = \sec x and dv=sec2xdxdv = {\sec ^2}xdx…(v)
Differentiate uu with respect to xx.
dudx=ddx(secx)\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\sec x} \right)…(vi)
Now, using the differentiation formula ddx(secx)=secxtanx\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x in differentiation (vi), we get
dudx=secxtanx\dfrac{{du}}{{dx}} = \sec x\tan x
du=secxtanxdx\Rightarrow du = \sec x\tan xdx…(vii)
Now, integrate vv with respect to xx.
dv=sec2xdx\int {dv} = \int {{{\sec }^2}xdx} …(viii)
Now, using the integration formula sec2xdx=tanx\int {{{\sec }^2}xdx} = \tan x in integral (viii), we get
v=tanxv = \tan x…(ix)
The integration by parts formula is:
udv=uvvdu\int {udv} = uv - \int {vdu}
Put the value of u,v,du,dvu,v,du,dv from (v), (vii) and (ix).
sec2xsecxdx=secxtanxtanxsecxtanxdx\int {{{\sec }^2}x\sec xdx} = \sec x\tan x - \int {\tan x\sec x\tan xdx}
sec2xsecxdx=secxtanxtan2xsecxdx\Rightarrow \int {{{\sec }^2}x\sec xdx} = \sec x\tan x - \int {{{\tan }^2}x\sec xdx}…(x)
Second integral: secxdx\int {\sec xdx}
Now, using the integration formula secxdx=lnsecx+tanx\int {\sec xdx} = \ln \left| {\sec x + \tan x} \right| in second integral, we get
secxdx=lnsecx+tanx\Rightarrow \int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|…(xi)
Use equation (x) and (xi) in equation (iv).
tan2(x)sec(x)dx=secxtanxtan2(x)sec(x)dx+lnsecx+tanx\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \sec x\tan x - \int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} + \ln \left| {\sec x + \tan x} \right|
We can add the tan2(x)sec(x)dx\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} on the right to the left to get:
2tan2(x)sec(x)dx=secxtanx+lnsecx+tanx2\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \sec x\tan x + \ln \left| {\sec x + \tan x} \right|
tan2(x)sec(x)dx=12secxtanx+12lnsecx+tanx+C\Rightarrow \int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \dfrac{1}{2}\sec x\tan x + \dfrac{1}{2}\ln \left| {\sec x + \tan x} \right| + C

Hence, tan2(x)sec(x)dx=12secxtanx+12lnsecx+tanx+C\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \dfrac{1}{2}\sec x\tan x + \dfrac{1}{2}\ln \left| {\sec x + \tan x} \right| + C.

Note:
If instead we had tanxsec2xdx\int {\tan x{{\sec }^2}xdx} , we could make the simple substitution u=tanxu = \tan x, du=sec2xdxdu = {\sec ^2}xdx, which would make the integral udu\int {udu} . Unfortunately, that is not the case.