Question
Question: How do you find the integral of \({\tan ^2}\left( x \right)\sec \left( x \right)dx\)?...
How do you find the integral of tan2(x)sec(x)dx?
Solution
First, use trigonometry identity to find the value of tan2x and put the value of tan2x in the given integral. Then, use distributive property in integral. Next, use property (III) to split the integrals. The, solve the first integral by integration by parts and second integral using (IV). Substitute all the values in the combined integral and get the required result.
Formula used:
- The integral of the product of a constant and a function = the constant × integral of the function.
i.e., ∫(kf(x)dx)=k∫f(x)dx, where k is a constant. - Trigonometric identity: tan2x+1=sec2x
- The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx - Integration formula: ∫sec2xdx=tanx and ∫secxdx=ln∣secx+tanx∣
- Differentiation formula: dxd(secx)=secxtanx
- Integration by parts: ∫udv=uv−∫vdu
Complete step by step solution:
We have to find ∫tan2(x)sec(x)dx…(i)
Use identity tan2x−sec2x=1, to find the value of tan2x.
Since, tan2x+1=sec2x.
So, tan2x=sec2x−1.
Now, put the value of tan2x in integral (i).
∫tan2(x)sec(x)dx=∫(sec2x−1)secxdx…(ii)
Use distributive property in integral (ii).
∫tan2(x)sec(x)dx=∫(sec3x−secx)dx…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
So, in above integral (iii), we can use above property
∫tan2(x)sec(x)dx=∫sec3xdx−∫secxdx…(iv)
First integral: ∫sec3xdx
It can be written as ∫sec2xsecxdx
Now, use integration by parts with u=secx and dv=sec2xdx…(v)
Differentiate u with respect to x.
dxdu=dxd(secx)…(vi)
Now, using the differentiation formula dxd(secx)=secxtanx in differentiation (vi), we get
dxdu=secxtanx
⇒du=secxtanxdx…(vii)
Now, integrate v with respect to x.
∫dv=∫sec2xdx…(viii)
Now, using the integration formula ∫sec2xdx=tanx in integral (viii), we get
v=tanx…(ix)
The integration by parts formula is:
∫udv=uv−∫vdu
Put the value of u,v,du,dv from (v), (vii) and (ix).
∫sec2xsecxdx=secxtanx−∫tanxsecxtanxdx
⇒∫sec2xsecxdx=secxtanx−∫tan2xsecxdx…(x)
Second integral: ∫secxdx
Now, using the integration formula ∫secxdx=ln∣secx+tanx∣ in second integral, we get
⇒∫secxdx=ln∣secx+tanx∣…(xi)
Use equation (x) and (xi) in equation (iv).
∫tan2(x)sec(x)dx=secxtanx−∫tan2(x)sec(x)dx+ln∣secx+tanx∣
We can add the ∫tan2(x)sec(x)dx on the right to the left to get:
2∫tan2(x)sec(x)dx=secxtanx+ln∣secx+tanx∣
⇒∫tan2(x)sec(x)dx=21secxtanx+21ln∣secx+tanx∣+C
Hence, ∫tan2(x)sec(x)dx=21secxtanx+21ln∣secx+tanx∣+C.
Note:
If instead we had ∫tanxsec2xdx, we could make the simple substitution u=tanx, du=sec2xdx, which would make the integral ∫udu. Unfortunately, that is not the case.