Solveeit Logo

Question

Question: How do you find the integral of \({\sin ^3}\left[ x \right]dx\)?...

How do you find the integral of sin3[x]dx{\sin ^3}\left[ x \right]dx?

Explanation

Solution

To find the integral of sin3[x]dx{\sin ^3}\left[ x \right]dx, we need to use some relations. First of all, we can write sin3[x]dx{\sin ^3}\left[ x \right]dx as sinxsin2x\sin x \cdot {\sin ^2}x. Now, we have an identity, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1. So, therefore sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x. Substitute this value of sin in the obtained equation. Now, simplify the integral and you can easily integrate the function.

Complete step by step solution:
In this question, we have to find the integral of sin3[x]dx{\sin ^3}\left[ x \right]dx.
Let the integral of sin3[x]dx{\sin ^3}\left[ x \right]dx be
I=sin3xdx\Rightarrow I = \int {{{\sin }^3}xdx}- - - - - - - - - - - - - (1)
Now, we can write sin3xdx{\sin ^3}xdx as sinxsin2x\sin x \cdot {\sin ^2}x. Therefore, equation (1) becomes
I=sinxsin2xdx\Rightarrow I = \int {\sin x \cdot {{\sin }^2}xdx}- - - - - - - - - - - (2)
Now, we know the trigonometric identity that is, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1.
Therefore, sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x. Substituting the value of sin2x{\sin ^2}x in equation (2), we get
I=sinx(1cos2x)dx\Rightarrow I = \int {\sin x \cdot \left( {1 - {{\cos }^2}x} \right)dx}- - - - - - - - - - - (3)
Now, opening the bracket we get
I=sinxsinxcos2xdx\Rightarrow I = \int {\sin x - \sin x{{\cos }^2}xdx}- - - - - - - - (4)
Now, separating the terms, we get
I=sinxdxsinxcos2xdx\Rightarrow I = \int {\sin xdx - \int {\sin x{{\cos }^2}xdx} }
I=sinxdx+sinxcos2xdx\Rightarrow I = \int {\sin xdx + \int { - \sin x{{\cos }^2}xdx} }- - - - - - - - - (5)
Now, we know that sinxdx=cosx\int {\sin xdx = - \cos x} .
Now, for sinxcos2xdx\int {\sin x{{\cos }^2}xdx} , we have a result
f(x)nf(x)dx=f(x)n+1n+1\int {f{{\left( x \right)}^n} \cdot f'\left( x \right)dx = \dfrac{{f{{\left( x \right)}^{n + 1}}}}{{n + 1}}}
Here, f(x)=cosxf\left( x \right) = \cos x and f(x)=sinxf'\left( x \right) = - \sin x and n=2n = 2.
Therefore, sinxcos2xdx=cos2+1x2+1=cos3x3\int {\sin x{{\cos }^2}xdx} = \dfrac{{{{\cos }^{2 + 1}}x}}{{2 + 1}} = \dfrac{{{{\cos }^3}x}}{3}.
Therefore, equation (5) becomes
I=cosx+cos3x3+c\Rightarrow I = - \cos x + \dfrac{{{{\cos }^3}x}}{3} + c
Where, c is the integration constant.
Hence, the integral of sin3[x]dx{\sin ^3}\left[ x \right]dx is cosx+cos3x3+c - \cos x + \dfrac{{{{\cos }^3}x}}{3} + c.

Note:
Note that there is no direct formula for finding the integral of trigonometric functions with power greater than 1. So, we always need to use trigonometric relations and formulas to bring the function in simple terms so that we can integrate it easily.