Solveeit Logo

Question

Question: How do you find the integral of \(\left( \cos x \right)\left( \cosh x \right)dx\)?...

How do you find the integral of (cosx)(coshx)dx\left( \cos x \right)\left( \cosh x \right)dx?

Explanation

Solution

In this problem we have given a function and asked to calculate the integration value. We can observe that the given function is the multiplication of the trigonometric function with the hyperbolic function. First of all, the given function has multiplication operation, so we are going to use the integration by parts rule which is uvdx=uvdx[(u)vdx]dx\int{uvdx}=u\int{vdx}-\int{\left[ \left( {{u}^{'}} \right)\int{vdx} \right]dx}. So, we will choose uu, vv by ILATE rule. After choosing uu, vv. We will apply the integration by parts rule and simplify the equation by using the integration and differentiation formulas.

Complete step by step answer:
Given that, (cosx)(coshx)dx\left( \cos x \right)\left( \cosh x \right)dx.
In the above function we have trigonometric function cosx\cos x, hyperbolic function coshx\cosh x. From ILATE (Inverse, Logarithmic, Algebraic, Trigonometric, Exponential) rule the first function uu is cosx\cos x, the second function vv is coshx\cosh x.
Now the integration of the given function from the integration by parts formula uvdx=uvdx[(u)vdx]dx\int{uvdx}=u\int{vdx}-\int{\left[ \left( {{u}^{'}} \right)\int{vdx} \right]dx} is given by
cosxcoshxdx=cosxcoshxdx[(cosx)coshxdx]dx\int{\cos x\cosh xdx}=\cos x\int{\cosh xdx}-\int{\left[ {{\left( \cos x \right)}^{'}}\int{\cosh xdx} \right]dx}
We have the differentiation formula ddx(cosx)=sinx\dfrac{d}{dx}\left( \cos x \right)=-\sin x, applying this formula in the above equation, then we will get
cosxcoshxdx=cosxcoshxdx[(sinx)coshxdx]dx\Rightarrow \int{\cos x\cosh xdx}=\cos x\int{\cosh xdx}-\int{\left[ \left( -\sin x \right)\int{\cosh xdx} \right]dx}
We have the integration formula coshxdx=sinhx+C\int{\cosh xdx}=\sinh x+C, applying this formula in the above equation, then we will have
cosxcoshxdx=cosx(sinhx)+sinxsinhxdx...(i)\Rightarrow \int{\cos x\cosh xdx}=\cos x\left( \sinh x \right)+\int{\sin x\sinh xdx}...\left( \text{i} \right)
From the above equation we can say that to calculate the integration of the given function we need to have the value of sinxsinhxdx\int{\sin x\sinh xdx}. So, applying the same integration by parts formula for this function also, then we will have
sinxsinhxdx=sinxsinhxdx[(sinx)sinhxdx]dx\Rightarrow \int{\sin x\sinh xdx}=\sin x\int{\sinh xdx}-\int{\left[ {{\left( \sin x \right)}^{'}}\int{\sinh xdx} \right]dx}
We have the formulas ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x, sinhxdx=coshx+C\int{\sinh xdx}=\cosh x+C. Substituting these formulas in the above equation, then we will get
sinxsinhxdx=sinxcoshxcosxcoshxdx...(ii)\Rightarrow \int{\sin x\sinh xdx}=\sin x\cosh x-\int{\cos x\cosh xdx}...\left( \text{ii} \right)
Substituting this value in the equation (i)\left( \text{i} \right), then we will get
cosxcoshxdx=cosxsinhx+[sinxcoshxcosxcoshxdx]\Rightarrow \int{\cos x\cosh xdx}=\cos x\sinh x+\left[ \sin x\cosh x-\int{\cos x\cosh xdx} \right]
Simplifying the above equation, then we will have
cosxcoshxdx+cosxcoshxdx=cosxsinhx+sinxcoshx 2cosxcoshxdx=cosxsinhx+sinxcoshx cosxcoshxdx=cosxsinhx+sinxcoshx2+C \begin{aligned} & \Rightarrow \int{\cos x\cosh xdx}+\int{\cos x\cosh xdx}=\cos x\sinh x+\sin x\cosh x \\\ & \Rightarrow 2\int{\cos x\cosh xdx}=\cos x\sinh x+\sin x\cosh x \\\ & \therefore \int{\cos x\cosh xdx}=\dfrac{\cos x\sinh x+\sin x\cosh x}{2}+C \\\ \end{aligned}

Hence the integration of the given function (cosx)(coshx)dx\left( \cos x \right)\left( \cosh x \right)dx is cosxsinhx+sinxcoshx2+C\dfrac{\cos x\sinh x+\sin x\cosh x}{2}+C.

Note: In this problem students may make a little mistake which will cost the whole problem. In integration of trigonometric ratios, we have sinxdx=cosx+C\int{\sin xdx}=-\cos x+C, cosxdx=sinx+C\int{\cos xdx}=\sin x+C but when it comes to integration of hyperbolic functions, we have sinhxdx=coshx+C\int{\sinh xdx}=\cosh x+C, coshxdx=sinhx+C\int{\cosh xdx}=\sinh x+C. If you forget about this change and solved the problem you will get an incorrect solution.