Solveeit Logo

Question

Question: How do you find the integral of \(\int{\sin x\tan x dx}\)?...

How do you find the integral of sinxtanxdx\int{\sin x\tan x dx}?

Explanation

Solution

We can not directly integrate the given trigonometric function. We first try to simplify the function where we express the multiplication form in the form addition and subtraction. We then integrate the new form of trigonometric function. We use secxdx=logsecx+tanx+c\int{\sec x dx}=\log \left| \sec x+\tan x \right|+c and cosxdx=sinx+c\int{\cos xdx}=\sin x+c.

Complete step-by-step solution:
First, we find the simplified form of the given trigonometric function sinxtanx\sin x\tan x. Then we try to find the integration of the simplified form.
We have the identity theorem for ratio tan where tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}.
We multiply sinx\sin x to the both sides of the equation tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}.
sinxtanx=sinxcosx×sinx=sin2xcosx\Rightarrow \sin x\tan x=\dfrac{\sin x}{\cos x}\times \sin x=\dfrac{{{\sin }^{2}}x}{\cos x}.
We know that the sum of squares of ratio sin and cos is always 1.
This gives sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. We replace sin2x{{\sin }^{2}}x with sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x.
sinxtanx=1cos2xcosx\Rightarrow \sin x\tan x=\dfrac{1-{{\cos }^{2}}x}{\cos x}.
Breaking the division, we get sinxtanx=1cosxcos2xcosx=secxcosx\sin x\tan x=\dfrac{1}{\cos x}-\dfrac{{{\cos }^{2}}x}{\cos x}=\sec x-\cos x.
Now we find the simplified form of the trigonometric ratio where sinxtanx=secxcosx\sin x\tan x=\sec x-\cos x.
Taking integration on both sides, we get sinxtanxdx=(secxcosx)dx\int{\sin x\tan x dx}=\int{\left( \sec x-\cos x \right)dx}.
We know that secxdx=logsecx+tanx+c\int{\sec x dx}=\log \left| \sec x+\tan x \right|+c and cosxdx=sinx+c\int{\cos xdx}=\sin x+c.
We put these values and get
sinxtanxdx=(secxcosx)dx =secxdxcosxdx =logsecx+tanxsinx+c \begin{aligned} & \int{\sin x\tan x dx}=\int{\left( \sec x-\cos x \right)dx} \\\ & =\int{\sec x dx}-\int{\cos xdx} \\\ & =\log \left| \sec x+\tan x \right|-\sin x+c \\\ \end{aligned}
Here cc is the integral constant.
Therefore, the integral of sinxtanxdx\int{\sin x\tan x dx} is logsecx+tanxsinx+c\log \left| \sec x+\tan x \right|-\sin x+c.

Note: These integrals are evaluated by applying trigonometric identities, as outlined in the particular rules. The integration works for different ratios involving the by parts theorem also. The differential is always equal to the anti-derivative law.