Solveeit Logo

Question

Question: How do you find the integral of \( \int {\dfrac{1}{{\sqrt x \times \left( {1 + x} \right)}}} dx \) ?...

How do you find the integral of 1x×(1+x)dx\int {\dfrac{1}{{\sqrt x \times \left( {1 + x} \right)}}} dx ?

Explanation

Solution

From the given function first declare a variable uu and substitute it into the integral then Differentiate uu and isolate the xx term. This gives you the differential du=dxdu = dx . Substitute dudu for dxdx in the integral: Evaluate the integral and Substitute back xx value in the place of uu

Complete step-by-step solution:
To integrate the given equation
1x×(1+x)dx\Rightarrow \int {\dfrac{1}{{\sqrt x \times \left( {1 + x} \right)}}} dx
Consider x=u\sqrt x = u
We can write uu as
u=(x)12\Rightarrow u = {\left( x \right)^{\dfrac{1}{2}}}
Therefore on differentiating uu , we get
dudx=12(x)121\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}{\left( x \right)^{\dfrac{1}{2} - 1}}
Now solve power value
dudx=12(x)12\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}{\left( x \right)^{ - \dfrac{1}{2}}}
So therefore we can write the component as
dudx=12x\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{2\sqrt x }}
Now bring dxdx to the RHS, we get
du=12xdx\Rightarrow du = \dfrac{1}{{2\sqrt x }}dx
Now substitute uu in the place of x\sqrt x
Therefore we get,
du=12udx\Rightarrow du = \dfrac{1}{{2u}}dx
Now find the value of dxdx we get
dx=2udu\Rightarrow dx = 2udu
Substitute this uu and dxdx value in the given equation
Therefore we get
1u×(1+u2)2udu\Rightarrow \int {\dfrac{1}{{u \times \left( {1 + {u^2}} \right)}}} 2u\,du
Now cancel out uu
211+u2du\Rightarrow 2\int {\dfrac{1}{{1 + {u^2}}}} du
Substitute the value of 11+u2du\int {\dfrac{1}{{1 + {u^2}}}} du
Then we get
2arctan(u)\Rightarrow 2\,\arctan \left( u \right)
Now substitute the value of uu
Therefore we get
2arctanx+C\Rightarrow 2\,\arctan \sqrt x + C

Hence the integral of 1x×(1+x)dx\int {\dfrac{1}{{\sqrt x \times \left( {1 + x} \right)}}} dx is 2arctanx+C2\,\arctan \sqrt x + C

Note: The following integral is very common in calculus:
11+x2dx=arctanx+C\Rightarrow \int {\dfrac{1}{{1 + {x^2}}}} dx = \arctan x + C
A more general form is
1a2+x2dx=1aarctan(xa)+C\Rightarrow \int {\dfrac{1}{{{a^2} + {x^2}}}} dx = \dfrac{1}{a}\arctan \left( {\dfrac{x}{a}} \right) + C
Proof:
Factor a2{a^2} from the denominator:
1a2+x2dx=1a2(1+x2a2)dx=1a211+(x2a2)dx\Rightarrow \int {\dfrac{1}{{{a^2} + {x^2}}}} dx = \int {\dfrac{1}{{{a^2}\left( {1 + \dfrac{{{x^2}}}{{{a^2}}}} \right)}}dx = } \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{1 + \left( {\dfrac{{{x^2}}}{{{a^2}}}} \right)}}dx}
Now we do a uduudu substitution, with u=xau = \dfrac{x}{a} so that du=1adxdu = \dfrac{1}{a}dx
Thus, dx=adudx = adu
We make the replacements:
1a21(1+(x2a2))dx=1a211+u2(adu)\Rightarrow \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{\left( {1 + \left( {\dfrac{{{x^2}}}{{{a^2}}}} \right)} \right)}}} dx = \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{1 + {u^2}}}} \left( {a\,du} \right)
Note that the aa inside the integral comes out to the front, so we have
1a211+u2(adu)=1a11+u2du\Rightarrow \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{1 + {u^2}}}} \left( {a\,du} \right) = \dfrac{1}{a}\int {\dfrac{1}{{1 + {u^2}}}} du
Now we integrate:
1a11+u2du=1aarctanu=1aarctanxa+C\Rightarrow \dfrac{1}{a}\int {\dfrac{1}{{1 + {u^2}}}} du = \dfrac{1}{a}\arctan u = \dfrac{1}{a}\arctan \dfrac{x}{a} + C