Solveeit Logo

Question

Question: How do you find the integral of \[\int {\dfrac{1}{{1 + \cos (x)}}} ?\]...

How do you find the integral of 11+cos(x)?\int {\dfrac{1}{{1 + \cos (x)}}} ?

Explanation

Solution

Hint : The question describes the operation of addition/ subtraction/ multiplication/ division. We need to know algebraic formulae to simplify the term in the integral. Also, we need to know trigonometrical conditions and basic integration formulae. We need to know how to substitute the trigonometric identities at the correct place to solve the given problem. Also, we need to know how to take conjugate to simplify the denominator.

Complete step-by-step answer :
In this question, we have to find the integral form of 11+cosx\dfrac{1}{{1 + \cos x}} . That is given below,
11+cos(x)dx=?\int {\dfrac{1}{{1 + \cos (x)}}} dx = ?
For solving the above equation we take conjugate for the term 11+cosx\dfrac{1}{{1 + \cos x}} . So, we get

11+cosxdx=1(1+cosx)×(1cosx)(1cosx)dx 11+cosxdx=1cosx(1+cosx)(1cosx)dx(1)  \int {\dfrac{1}{{1 + \cos x}}} dx = \int {\dfrac{1}{{\left( {1 + \cos x} \right)}}} \times \dfrac{{\left( {1 - \cos x} \right)}}{{\left( {1 - \cos x} \right)}}dx \\\ \int {\dfrac{1}{{1 + \cos x}}} dx = \int {\dfrac{{1 - \cos x}}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}}} dx \to \left( 1 \right) \\\

We know that,
(a+b)(ab)=a2b2(2)\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} \to \left( 2 \right)
Let’s substitute the equation (2)\left( 2 \right) in the equation (1)\left( 1 \right) , we get
1cosx(1+cosx)(1cosx)dx=1cosx(1cos2x)dx(3)\int {\dfrac{{1 - \cos x}}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}}} dx = \int {\dfrac{{1 - \cos x}}{{\left( {1 - {{\cos }^2}x} \right)}}} dx \to \left( 3 \right)
We know that,
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
The above equation can also be written as,
sin2x=1cos2x(4){\sin ^2}x = 1 - {\cos ^2}x \to \left( 4 \right)
Let’s substitute the above equation in the equation (3)\left( 3 \right) , we get
1cosx(1cos2x)dx=1cosxsin2xdx\int {\dfrac{{1 - \cos x}}{{\left( {1 - {{\cos }^2}x} \right)}}} dx = \int {\dfrac{{1 - \cos x}}{{{{\sin }^2}x}}} dx
The above equation can also be written as,
1cosxsin2xdx=1sin2xdxcosxsin2xdx(5)\int {\dfrac{{1 - \cos x}}{{{{\sin }^2}x}}} dx = \int {\dfrac{1}{{{{\sin }^2}x}}} dx - \int {\dfrac{{\cos x}}{{{{\sin }^2}x}}} dx \to \left( 5 \right)
We know that,
1sinx=cosecx\dfrac{1}{{\sin x}} = \cos ecx
So,
1sin2x=cosec2x(6)\dfrac{1}{{{{\sin }^2}x}} = \cos e{c^2}x \to \left( 6 \right)
Let’s substitute the above equation in the equation (5)\left( 5 \right) , we get
1sin2xdxcosxsin2xdx=cosec(x)dxcosxsin2xdx(7)\int {\dfrac{1}{{{{\sin }^2}x}}} dx - \int {\dfrac{{\cos x}}{{{{\sin }^2}x}}} dx = \int {\cos ec(x)dx} - \int {\dfrac{{\cos x}}{{{{\sin }^2}x}}} dx \to \left( 7 \right)
First, we have to solve,
cosxsin2xdx=?\int {\dfrac{{\cos x}}{{{{\sin }^2}x}}} dx = ?
Here we take,

u=sinx du=cosxdx   u = \sin x \\\ du = \cos xdx \;

So, we get
cosxsin2xdx=1u2du\int {\dfrac{{\cos x}}{{{{\sin }^2}x}}} dx = \int {\dfrac{1}{{{u^2}}}} du
So, the equation (7)\left( 7 \right) becomes,
cosec(x)dxcosxsin2xdx=cosec(x)dx1u2du(8)\int {\cos ec(x)dx} - \int {\dfrac{{\cos x}}{{{{\sin }^2}x}}} dx = \int {\cos ec(x)dx - \int {\dfrac{1}{{{u^2}}}} } du \to \left( 8 \right)
We know that,
cosec(x)dx=cotx\int {\cos ec(x)dx = - \cot x}
And
1u2du=u2du=u2+12+1=u11=1u\int {\dfrac{1}{{{u^2}}}} du = \int {{u^{ - 2}}du} = \dfrac{{{u^{ - 2 + 1}}}}{{ - 2 + 1}} = \dfrac{{{u^{ - 1}}}}{{ - 1}} = \dfrac{{ - 1}}{u}
We know that
u=sinxu = \sin x
So we get,
1u2du=1u=1sinx\int {\dfrac{1}{{{u^2}}}} du = \dfrac{{ - 1}}{u} = \dfrac{{ - 1}}{{\sin x}}
So, the equation (8)\left( 8 \right) becomes,
cosec2xdx1u2du=cotx+1sinx+c\int {\cos e{c^2}xdx - \int {\dfrac{1}{{{u^2}}}} } du = - \cot x + \dfrac{1}{{\sin x}} + c
The above equation can also be written as,
cosec2xdx1u2du=cotx+cosec(x)+c\int {\cos e{c^2}xdx - \int {\dfrac{1}{{{u^2}}}} } du = - \cot x + \cos ec(x) + c
So, the final answer is,
cosec2xdx1u2du=cotx+cosec(x)+c\int {\cos e{c^2}xdx - \int {\dfrac{1}{{{u^2}}}} } du = - \cot x + \cos ec(x) + c
So, the correct answer is “cotx+cosec(x)+c- \cot x + \cos ec(x) + c”.

Note : When we replace uu with sinx\sin x we should add cc in the final answer. If we want to simplify the denominator term we can take conjugate for that term and multiply it with both numerator and denominator. To solve these types of questions we would remember the basic formulae for integration and trigonometric identities