Solveeit Logo

Question

Question: How do you find the integral of \[\int {(1 + \cos x} {)^2}dx\]?...

How do you find the integral of (1+cosx)2dx\int {(1 + \cos x} {)^2}dx?

Explanation

Solution

We can solve this using the algebraic identity (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab. The term inside the integral sign is called the integrand. First we expand the integrand using the identity then we integrate. Where a=1a = 1 and b=cosxb = \cos x. We know the integration of xn{x^n} with respect to ‘x’, that is xndx=xn+1n+1+c\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c. Where ‘c’ is the integration constant.

Complete step by step solution:
Given (1+cosx)2dx\int {(1 + \cos x} {)^2}dx.
Now applying the identity (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab, where a=1a = 1 and b=cosxb = \cos x.
(1+cosx)2=1+cos2x+2cosx{\left( {1 + \cos x} \right)^2} = 1 + {\cos ^2}x + 2\cos x
Thus we have,
(1+cosx)2dx=(1+cos2x+2cosx)dx\int {(1 + \cos x} {)^2}dx = \int {(1 + {{\cos }^2}x + 2\cos x} )dx
=(1+cos2x+2cosx)dx= \int {(1 + {{\cos }^2}x + 2\cos x} )dx
Expanding the integration for each term,
(1+cosx)2dx=1.dx+cos2x.dx+2cosx.dx\int {(1 + \cos x} {)^2}dx = \int 1 .dx + \int {{{\cos }^2}x.} dx + \int {2\cos x.} dx
We know that cos2x=1+cos2x2{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}, then
(cosx)2.dx=1+cos2x2.dx\int {{{(\cos x)}^2}.} dx = \int {\dfrac{{1 + \cos 2x}}{2}.dx}
=12.dx+cos2x2.dx= \int {\dfrac{1}{2}} .dx + \int {\dfrac{{\cos 2x}}{2}.dx}
=x2+sin2x2×2+c= \dfrac{x}{2} + \dfrac{{\sin 2x}}{{2 \times 2}} + c
(cosx)2.dx=x2+sin2x4+c (1)\int {{{(\cos x)}^2}.} dx = \dfrac{x}{2} + \dfrac{{\sin 2x}}{4} + c{\text{ }} - - - (1).
Also 1.dx=x+c (2)\int 1 .dx = x + c{\text{ }} - - - (2)
2cosx.dx=2sinx+c (3)\int {2\cos x.} dx = 2\sin x + c{\text{ }} - - - (3)
Where ‘c’ is the integration constant.
Substituting (1) (2) and (3) in the above integral equation we have,
(1+cosx)2dx=x+x2+sin2x4+2sinx+3c\int {(1 + \cos x} {)^2}dx = x + \dfrac{x}{2} + \dfrac{{\sin 2x}}{4} + 2\sin x + 3c
Since ‘3c’ is also a constant we denote this by “C”. Then we have
(1+cosx)2dx=x+x2+sin2x4+2sinx+C\int {(1 + \cos x} {)^2}dx = x + \dfrac{x}{2} + \dfrac{{\sin 2x}}{4} + 2\sin x + C
Where ‘C’ is the integration constant

Note: In the given above problem we have an indefinite integral, that is no upper and lower limit. Hence we add the integration constant ‘c’ after integrating. In a definite integral we will have an upper and lower limit, we don’t need to add integration constant in the case of definite integral. We have different integration rule:
The power rule: If we have a variable ‘x’ raised to a power ‘n’ then the integration is given by xndx=xn+1n+1+c\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c} .
The constant coefficient rule: if we have an indefinite integral of K.f(x)K.f(x), where f(x) is some function and ‘K’ represent a constant then the integration is equal to the indefinite integral of f(x) multiplied by ‘K’. That is K.f(x)dx=cf(x)dx\int {K.f(x)dx = c\int {f(x)dx} } .
The sum rule: if we have to integrate functions that are the sum of several terms, then we need to integrate each term in the sum separately. That is
(f(x)+g(x))dx=f(x)dx+g(x)dx\int {\left( {f(x) + g(x)} \right)dx = \int {f(x)dx} } + \int {g(x)dx}
For the difference rule we have to integrate each term in the integrand separately.