Solveeit Logo

Question

Question: How do you find the integral of \( {e^{3x}} \cdot \cos 3xdx \) ?...

How do you find the integral of e3xcos3xdx{e^{3x}} \cdot \cos 3xdx ?

Explanation

Solution

Hint : To find the integral of e3xcos3xdx{e^{3x}} \cdot \cos 3xdx , we are going to use integration by parts. The formula for integration by parts is
For I=uvdxI = \int {uvdx} ,
I=uvdx(dudxvdx)dx\Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx
Here, the values of u and v are selected on the basis of ILATE rule. We have explained the integration by parts method in detail below.

Complete step by step solution:
In this question, we are given an expression and we need to find its integral. First of all, let this given integral be equal to II.
The given expression is: I=e3xcos3xdxI = {e^{3x}} \cdot \cos 3xdx - - - - - - - - - - - - - - - (1)
Integrating equation (1), we get
I=e3xcos3xdx\Rightarrow I = \int {{e^{3x}} \cdot \cos 3xdx} - - - - - - - - - - (2)
Here, we can see that the expression in equation (2) is in the form I=uvdxI = \int {uvdx} . That is we are going to use Bernoulli's rule for integration by parts to find the integral of equation (2).
Bernoulli’s rule for integration by parts for I=uvdxI = \int {uvdx} is
I=uvdx(dudxvdx)dx\Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx
Here, we have to decide the value of u and v based on their order using the ILATE rule. ILATE stands for
I – Inverse trigonometric Functions
L – Log functions
A – Algebraic Functions
T – Trigonometric functions
E – Exponential functions
So, here
u=cos3xu = \cos 3x and v=e3xv = {e^{3x}}
Therefore, we get

I=uvdx(dudxvdx)dx I=cos3xe3xdx(dcos3xdxe3xdx)dx I=cos3x(e3x3)(3sin3x(e3x3))dx   \Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx \\\ \Rightarrow I = \cos 3x\int {{e^{3x}}dx - \int {\left( {\dfrac{{d\cos 3x}}{{dx}}\int {{e^{3x}}dx} } \right)} } dx \\\ \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {\left( { - 3\sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right)} \right)} dx \;

I=cos3x(e3x3)+e3xsin3xdx\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \int {{e^{3x}}\sin 3xdx}
I=cos3x(e3x3)+I1\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + {I_1}- - - - - - - - - (3)
Here, I1=e3xsin3x{I_1} = {e^{3x}}\sin 3x
Now, we need to again use integration by parts to find this value. Therefore,

I1=e3xsin3x I1=uvdx(dudxvdx)dx I1=sin3xe3xdx(dsin3xdxe3xdx)dx I1=sin3x(e3x3)(3cos3x(e3x3))dx   \Rightarrow {I_1} = \int {{e^{3x}}\sin 3x} \\\ \Rightarrow {I_1} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx \\\ \Rightarrow {I_1} = \sin 3x\int {{e^{3x}}dx - \int {\left( {\dfrac{{d\sin 3x}}{{dx}}\int {{e^{3x}}dx} } \right)} } dx \\\ \Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {\left( {3\cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right)} \right)} dx \;

I1=sin3x(e3x3)e3xcos3xdx\Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {{e^{3x}}\cos 3xdx}- - - - - - - - - (4)
Now, our question was
I=e3xcos3xdx\Rightarrow I = \int {{e^{3x}} \cdot \cos 3xdx}
Therefore, equation (4) becomes
I1=sin3x(e3x3)I\Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - I
Substituting this in equation (3), we get

I=cos3x(e3x3)+I1 I=cos3x(e3x3)+sin3x(e3x3)I 2I=cos3x(e3x3)+sin3x(e3x3) 2I=e3x3(cos3x+sin3x) I=e3x6(cos3x+sin3x)+c   \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + {I_1} \\\ \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - I \\\ \Rightarrow 2I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) \\\ \Rightarrow 2I = \dfrac{{{e^{3x}}}}{3}\left( {\cos 3x + \sin 3x} \right) \\\ \Rightarrow I = \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c \;

Where, c is integration constant.
Hence, we have found the integral of e3xcos3xdx\int {{e^{3x}} \cdot \cos 3xdx} .
So, the correct answer is “ I=e3x6(cos3x+sin3x)+cI = \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c ”.

Note : There is also a shortcut method for solving this question. We have a direct formula that is
eaxcosbxdx=eaxa2+b2(acosbx+bsinbx)+c\Rightarrow \int {{e^{ax}}\cos bxdx = \dfrac{{{e^{ax}}}}{{{a^2} + {b^2}}}\left( {a\cos bx + b\sin bx} \right)} + c
Therefore,
e3xcos3xdx=e3x32+32(3cos3x+3sin3x)+c e3xcos3xdx=e3x18×3(cos3x+sin3x)+c e3xcos3xdx=e3x6(cos3x+sin3x)+c  \Rightarrow \int {{e^{3x}}\cos 3xdx = \dfrac{{{e^{3x}}}}{{{3^2} + {3^2}}}\left( {3\cos 3x + 3\sin 3x} \right)} + c \\\ \Rightarrow \int {{e^{3x}}\cos 3xdx = } \dfrac{{{e^{3x}}}}{{18}} \times 3\left( {\cos 3x + \sin 3x} \right) + c \\\ \Rightarrow \int {{e^{3x}}\cos 3xdx = } \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c \\\