Solveeit Logo

Question

Question: How do you find the integral of \({{\cos }^{6}}\left( x \right)\)?...

How do you find the integral of cos6(x){{\cos }^{6}}\left( x \right)?

Explanation

Solution

To integrate the given function, we first need to convert it into the sum of linear trigonometric functions. For this, we have to use the trigonometric identities; cos(3x)=4cos3(x)3cos(x)\cos \left( 3x \right)=4{{\cos }^{3}}\left( x \right)-3\cos \left( x \right), 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right), and cos(2A)=2cos2(A)1\cos \left( 2A \right)=2{{\cos }^{2}}\left( A \right)-1. By using these identities, the given integral will be converted into the summation of the integrals of the linear trigonometric and the algebraic functions, which can be easily integrated.

Complete step by step answer:
Let us represent the integral given in the question by
I=cos6(x)dxI=\int{{{\cos }^{6}}\left( x \right)}dx
Clearly, we cannot integrate the given expression directly. This is because only the linear trigonometric functions can be directly integrated. So we need to simplify the given function into the sum of the linear trigonometric functions. Now, we can write the above integral as
I=(cos3(x))2dx........(i)\Rightarrow I=\int{{{\left( {{\cos }^{3}}\left( x \right) \right)}^{2}}}dx........(i)
Now, we know that
cos(3x)=4cos3(x)3cos(x)\cos \left( 3x \right)=4{{\cos }^{3}}\left( x \right)-3\cos \left( x \right)
Adding 3cos(x)3\cos \left( x \right) both the sides, we get
cos(3x)+3cos(x)=4cos3(x)\Rightarrow \cos \left( 3x \right)+3\cos \left( x \right)=4{{\cos }^{3}}\left( x \right)
Dividing both the sides by 44, we get
cos(3x)+3cos(x)4=cos3(x)\Rightarrow \dfrac{\cos \left( 3x \right)+3\cos \left( x \right)}{4}={{\cos }^{3}}\left( x \right)
cos3(x)=14cos(3x)+34cos(x)..........(ii)\Rightarrow {{\cos }^{3}}\left( x \right)=\dfrac{1}{4}\cos \left( 3x \right)+\dfrac{3}{4}\cos \left( x \right)..........(ii)
Putting the equation (ii) in (i) we get
I=(14cos(3x)+34cos(x))2dx\Rightarrow I=\int{{{\left( \dfrac{1}{4}\cos \left( 3x \right)+\dfrac{3}{4}\cos \left( x \right) \right)}^{2}}}dx
We know that (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}. Considering a=14cos(3x)a=\dfrac{1}{4}\cos \left( 3x \right) and b=34cos(x)b=\dfrac{3}{4}\cos \left( x \right), we can write the above integral as
I=((14cos(3x))2+2(14cos(3x))(34cos(x))+(34cos(x))2)dx\Rightarrow I=\int{\left( {{\left( \dfrac{1}{4}\cos \left( 3x \right) \right)}^{2}}+2\left( \dfrac{1}{4}\cos \left( 3x \right) \right)\left( \dfrac{3}{4}\cos \left( x \right) \right)+{{\left( \dfrac{3}{4}\cos \left( x \right) \right)}^{2}} \right)}dx
I=(116cos2(3x)+38cos(3x)cos(x)+916cos2(x))dx...........(iii)\Rightarrow I=\int{\left( \dfrac{1}{16}{{\cos }^{2}}\left( 3x \right)+\dfrac{3}{8}\cos \left( 3x \right)\cos \left( x \right)+\dfrac{9}{16}{{\cos }^{2}}\left( x \right) \right)}dx...........(iii)
Now, we know that
2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)
cosAcosB=cos(A+B)2+cos(AB)2\Rightarrow \cos A\cos B=\dfrac{\cos \left( A+B \right)}{2}+\dfrac{\cos \left( A-B \right)}{2}
Putting A=3xA=3x and B=xB=x, we get
cos(3x)cos(x)=cos(3x+x)2+cos(3xx)2\Rightarrow \cos \left( 3x \right)\cos \left( x \right)=\dfrac{\cos \left( 3x+x \right)}{2}+\dfrac{\cos \left( 3x-x \right)}{2}
cos(3x)cos(x)=cos(4x)2+cos(2x)2.............(iv)\Rightarrow \cos \left( 3x \right)\cos \left( x \right)=\dfrac{\cos \left( 4x \right)}{2}+\dfrac{\cos \left( 2x \right)}{2}.............(iv)
Also, we have from the following trigonometric identity
cos(2A)=2cos2(A)1\cos \left( 2A \right)=2{{\cos }^{2}}\left( A \right)-1
Adding 11 both the sides, we get
cos(2A)+1=2cos2(A)\Rightarrow \cos \left( 2A \right)+1=2{{\cos }^{2}}\left( A \right)
Dividing by 22 both the sides, we get
cos(2A)+12=cos2(A)\Rightarrow \dfrac{\cos \left( 2A \right)+1}{2}={{\cos }^{2}}\left( A \right)
cos2(A)=cos(2A)+12........(v)\Rightarrow {{\cos }^{2}}\left( A \right)=\dfrac{\cos \left( 2A \right)+1}{2}........(v)
Putting A=xA=x in (v), we get
cos2(x)=cos(2x)+12........(vi)\Rightarrow {{\cos }^{2}}\left( x \right)=\dfrac{\cos \left( 2x \right)+1}{2}........(vi)
Now putting A=3xA=3x in (v), we get
cos2(3x)=cos(2(3x))+12\Rightarrow {{\cos }^{2}}\left( 3x \right)=\dfrac{\cos \left( 2\left( 3x \right) \right)+1}{2}
cos2(3x)=cos(6x)+12........(vii)\Rightarrow {{\cos }^{2}}\left( 3x \right)=\dfrac{\cos \left( 6x \right)+1}{2}........(vii)
Putting equations (iv), (vi), and (vii) in (iii) we get

& \Rightarrow I=\int{\left( \dfrac{1}{16}\left( \dfrac{\cos \left( 6x \right)+1}{2} \right)+\dfrac{3}{8}\left( \dfrac{\cos \left( 4x \right)}{2}+\dfrac{\cos \left( 2x \right)}{2} \right)+\dfrac{9}{16}\left( \dfrac{\cos \left( 2x \right)+1}{2} \right) \right)}dx \\\ & \Rightarrow I=\int{\left( \dfrac{1}{32}\cos \left( 6x \right)+\dfrac{1}{32}+\dfrac{3}{16}\cos \left( 4x \right)+\dfrac{3}{16}\cos \left( 2x \right)+\dfrac{9}{32}\cos \left( 2x \right)+\dfrac{9}{32} \right)}dx \\\ \end{aligned}$$ Writing similar terms together, we get $$\Rightarrow I=\int{\left( \dfrac{1}{32}\cos \left( 6x \right)+\dfrac{3}{16}\cos \left( 4x \right)+\dfrac{3}{16}\cos \left( 2x \right)+\dfrac{9}{32}\cos \left( 2x \right)+\dfrac{9}{32}+\dfrac{1}{32} \right)}dx$$ On adding the similar terms, we have $$\begin{aligned} & \Rightarrow I=\int{\left( \dfrac{1}{32}\cos \left( 6x \right)+\dfrac{3}{16}\cos \left( 4x \right)+\dfrac{15}{32}\cos \left( 2x \right)+\dfrac{10}{32} \right)}dx \\\ & \Rightarrow I=\int{\left( \dfrac{1}{32}\cos \left( 6x \right)+\dfrac{3}{16}\cos \left( 4x \right)+\dfrac{15}{32}\cos \left( 2x \right)+\dfrac{5}{16} \right)}dx \\\ \end{aligned}$$ Now, we can split the integral into four integrals as $$\Rightarrow I=\int{\left( \dfrac{1}{32}\cos \left( 6x \right) \right)dx+}\int{\left( \dfrac{3}{16}\cos \left( 4x \right) \right)dx}+\int{\dfrac{15}{32}\cos \left( 2x \right)dx}+\int{\dfrac{5}{16}dx}$$ Separating the constants out of all of the integrals, we get $$\Rightarrow I=\dfrac{1}{32}\int{\cos \left( 6x \right)dx+}\dfrac{3}{16}\int{\cos \left( 4x \right)dx}+\dfrac{15}{32}\int{\cos \left( 2x \right)dx}+\dfrac{5}{16}\int{dx}..........(viii)$$ Now, we know that $$\int{\cos \theta d\theta }=\sin \theta +C$$ So we have $$\int{\cos \left( 6x \right)dx}=\dfrac{1}{6}\sin \left( 6x \right)+{{C}_{1}}.........(ix)$$ Also $$\int{\cos \left( 4x \right)dx}=\dfrac{1}{4}\sin \left( 4x \right)+{{C}_{2}}.........(x)$$ And $$\int{\cos \left( 2x \right)dx}=\dfrac{1}{2}\sin \left( 2x \right)+{{C}_{3}}.........(xi)$$ Also, we know that $$\int{dx}=x+{{C}_{4}}..............(xii)$$ Putting (ix), (x), (xi), and (xii) in (viii) we get $$\begin{aligned} & \Rightarrow I=\dfrac{1}{32}\left( \dfrac{1}{6}\sin \left( 6x \right)+{{C}_{1}} \right)+\dfrac{3}{16}\left( \dfrac{1}{4}\sin \left( 4x \right)+{{C}_{2}} \right)+\dfrac{15}{32}\left( \dfrac{1}{2}\sin \left( 2x \right)+{{C}_{3}} \right)+\dfrac{5}{16}\left( x+{{C}_{4}} \right) \\\ & \Rightarrow I=\dfrac{1}{192}\sin \left( 6x \right)+\dfrac{1}{32}{{C}_{1}}+\dfrac{3}{64}\sin \left( 4x \right)+\dfrac{3}{16}{{C}_{2}}+\dfrac{15}{64}\sin \left( 2x \right)+\dfrac{15}{32}{{C}_{3}}+\dfrac{5}{16}x+\dfrac{5}{16}{{C}_{4}} \\\ & \Rightarrow I=\dfrac{1}{192}\sin \left( 6x \right)+\dfrac{3}{64}\sin \left( 4x \right)+\dfrac{15}{64}\sin \left( 2x \right)+\dfrac{5}{16}x+\dfrac{1}{32}{{C}_{1}}+\dfrac{3}{16}{{C}_{2}}+\dfrac{15}{32}{{C}_{3}}+\dfrac{5}{16}{{C}_{4}} \\\ \end{aligned}$$ Combining all of the constant terms, we finally get $$\Rightarrow I=\dfrac{1}{192}\sin \left( 6x \right)+\dfrac{3}{64}\sin \left( 4x \right)+\dfrac{15}{64}\sin \left( 2x \right)+\dfrac{5}{16}x+C$$ **Hence, the integral of ${{\cos }^{6}}\left( x \right)$ is equal to $$\dfrac{1}{192}\sin \left( 6x \right)+\dfrac{3}{64}\sin \left( 4x \right)+\dfrac{15}{64}\sin \left( 2x \right)+\dfrac{5}{16}x+C$$.** **Note:** Since the integral given in the question is indefinite, so do not forget to add a constant along with the integrated expression. Also, this question can also be solved by using the by-parts method. For that we need to express the given function as the product of $\cos \left( x \right)$ and ${{\cos }^{5}}\left( x \right)$. Taking ${{\cos }^{5}}\left( x \right)$ as the first function, we will be able to obtain the integrated expression. But we must note that the final integrated expression in this case will be different to what we have obtained in the above solution.